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Figure 3.2 The primary output responses of the agents in N and the secondary output re-
sponses of the agents in NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.1 The directed communication graph G, which does not include the leader node v0,
and the augmented directed communication graph Ḡ, which includes the leader
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Abstract

The overarching objective of this work is to propose solutions to quite a few distributed control

problems arising from networks of heterogeneous agents or the heterogeneous nature of multiagent systems.

Each problem with its solutions is concisely summarized below.

We consider the cooperative output regulation problem of heterogeneous linear multiagent systems

over fixed directed communication graphs. The purpose of this problem is to design a distributed control

law such that the overall closed-loop stability is ensured and the tracking error of each agent converges to

zero asymptotically for a class of reference inputs and disturbances generated by a so-called exosystem.

We investigate the solvability of the problem with internal model-based distributed control laws, namely

dynamic state feedback, dynamic output feedback with local measurement, and dynamic output feedback.

The approach is twofold: First, the overall closed-loop stability (i.e., global property) is assumed and it is

shown, under mild assumptions, that the problem is solved. Second, an agent-wise local sufficient condition

is derived to guarantee the global property under standard assumptions.

Then, we update the definition of the linear cooperative output regulation problem to allow not

only common output synchronization among agents but also an additional output synchronization among

a proper subset of the agents for a distributed dynamic state feedback control law that does not exchange

its state variables through a communication graph. Similar to the above-mentioned approach, its solvability

is investigated by making use of the internal model design from the linear output regulation theory and a

small-gain theorem for large-scale interconnected systems.

This dissertation also focuses on distributed control of linear multiagent systems with both global

and local objectives over fixed directed communication graphs. While the global objective is achieving

leaderless synchronization (i.e., consensus) or synchronization to a leader, local objectives for a subset of

agents are tasks determined by agent-specific dynamical systems around the synchronization mapping of

the global objective. Our main goal is to design a distributed control law such that each agent obeys the

global objective when it is not assigned the local task and performs its own local objective otherwise. To

iv
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this end, we construct reference models for all agents via two existing synchronization results, introduce

two classes of distributed controllers, and formally define the considered problems. Then, they are solved

by utilizing the converging-input converging-state property for a class of linear systems and the feedforward

design approach from the linear output regulation theory.

v
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Chapter 1: Introduction

Over the last two decades, synchronization has been an immensely popular subject in the cooper-

ative control literature because of its vast array of applications ranging from formation of mobile robots to

surveillance with unmanned aerial vehicles (e.g., see [2–5] and references therein). From a control theory

viewpoint, the fundamental problem in synchronization of coupled dynamical systems is the derivation of

conditions that ensure state or output synchronization of the network of these agents [6, 7]. The main

theoretical difficulty in this problem arises from the lack of a central authority; that is, the controller of each

agent relies only on the information about the agent and its neighbors [8].

State synchronization in networks of identical systems (i.e., homogeneous multiagent systems) on

directed graphs has been well studied. In particular, networks of single-integrator (respectively, double-

integrator) agents are considered in [9–11] (respectively, [12, 13]). For general linear time-invariant dynami-

cal systems, the authors of [6, 14–18] have proposed different distributed controllers and explored conditions

to guarantee leaderless synchronization. Extensions to cooperative tracking (i.e., synchronization to a leader

or leader-following consensus) problems have been further investigated in [17, 19, 20].

Although the aforementioned literature addresses the synchronization of homogeneous linear mul-

tiagent systems in detail, heterogeneity resulting from nonidentical system dynamics is inevitable for many

real-world applications. For instance, coordination of autonomous vehicles of various sizes or kinds for

environment mapping leads to synchronization problems in heterogeneous multivehicle systems. Instead of

state synchronization, output synchronization among all agents is now expected since the state of every agent

does not necessarily have the same physical interpretation. In fact, state dimensions can be different [8, 21,

22]. The authors of [22, 23] have derived necessary and sufficient conditions for output synchronization

of networks of heterogeneous (in dynamics and dimension) linear time-invariant systems under directed

graphs. In addition, heterogeneity can stem from local objectives of each agent, which are around the global

objective of the multiagent system, even if individual systems are identical.

1
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This dissertation focuses on three facets of distributed control problems due to the heterogeneity

mentioned in the preceding paragraph. The following sections briefly describe them and our contributions.

1.1 Cooperative Output Regulation of Heterogeneous Linear Multiagent Systems

The output regulation (i.e., servomechanism) problem has been one of the central research topics in

control theory since the early 1970s. It mainly concentrates on controlling the output of an uncertain system

to achieve asymptotic tracking with disturbance rejection for a class of reference inputs and disturbances

generated by an exosystem, which is usually a known autonomous differential equation, while preserving

the closed-loop stability [24, 25]. For general linear time-invariant systems, this problem was solved by

[26–28], where the celebrated internal model principle of control theory was the significant outcome.

For large-scale systems such as power distribution networks and flexible manufacturing systems,

decentralized design of decentralized controller (i.e., design of local controllers based on models of only the

relevant parts of the system) is more efficient than its centralized counterpart in control theory. On the other

hand, many problems solved by control theory are subproblems in decentralized control theory [29, 30].

The connections between these theories have been studied in [31, 32] for the decentralized output regulation

problem of linear interconnected systems. It should be noted that each local controller is assumed to have

an access to its reference input.

The cooperative output regulation (i.e., distributed output regulation) problem, which can be re-

garded as an extension of the conventional output regulation problem to multiagent systems, has attracted

attention during the last decade (e.g., see [1, 33–48] and references therein). The objective of this problem is

to design a distributed control law that enables overall closed-loop stability and output synchronization of all

agents to the reference input in the presence of external disturbances. The reference input to be tracked and

external disturbances to be rejected by the agents are generated by an exosystem as in the output regulation

theory. However, the problem cannot be solved by a decentralized control scheme since the information of

the exosystem is available to only a proper subset of all agents [34–37].

The cooperative output regulation problem has been studied in [36, 37] for the networks of almost

identical linear agents on directed graphs. In contrast to the dynamics of the leader considered in [19, 20],

the exosystem can differ from the unforced dynamics of the agents; hence, for example, a target with

different dynamics and unmeasurable variables can be tracked by identical vehicles. Therefore, the problem

formulation of cooperative output regulation can also be seen as an extension of the leader-following

2



www.manaraa.com

consensus problem when the exosystem and agents are viewed as the leader and followers, respectively

[34–37].

The problem of cooperative output regulation of heterogeneous (in dynamics and dimension) linear

time-invariant multiagent systems over general fixed (i.e., static) directed communication graphs have been

recently investigated in [1, 34, 35, 38–40, 42–44] with numerous distributed controllers. Similar to the

output regulation theory, distributed control approaches used to solve this problem can be classified into two

approaches: Feedforward approach and internal model approach. The former is adopted by [34, 35, 38, 40,

42–44] and the feedforward gain of each agent relies on the solution of the regulator equations; hence, this

approach is known to be not robust to parameter uncertainties. On the other hand, the latter employed by

[1, 39] is robust with respect to small variations of the plant parameters. However, it cannot be applied when

the transmission zero condition does not hold.

1.2 Linear Cooperative Output Regulation with Primary and Secondary Synchronization Roles

In Section 1.1, the papers on the linear cooperative output regulation problem of heterogeneous

multiagent systems over general fixed directed communication graphs are classified according to the output

regulation theory. The heterogeneity in dimensions of the regulated outputs is a desired feature if the agents

are expected to track different dimensional reference signals. Now, we group the papers according to the

regulated output dimensions of the agents. While they are allowed to be different in [34, 35, 40, 43], the

authors of [1, 38, 39, 42, 44] assume that the dimensions are the same and even the output matrix of the

exosystem for each agent is identical. Besides using the feedforward approach, the controllers in [34, 35,

40, 43] all have distributed observers of the exosystem that exchange information about their states over the

communication graph. The proposed solutions in [1, 38, 39, 42], however, do not exchange information

about states of the controllers. Instead, they utilize relative output information of neighboring agents.

When controllers are not allowed to exchange their state variables, we seek output synchronization

among all agents in [1, 38, 39, 42], but is it the only possible synchronization in the network? To see this,

consider a heterogeneous multiagent system that is not too “heterogeneous”; that is, some of the agents

have similar dynamics. A simple example is a network of aerial and ground robots. Even if an exosystem

generates a reference input consisting of positions in the x, y, and z directions, altitude synchronization of

all robots cannot be achieved except trivial cases. On the contrary, positions in the x and y directions can

be synchronized among all agents. Basically, the regulated output of each agent in this case is the common
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output of the exosystem and all the agents. In addition to the common output synchronization, which shall

be called the primary synchronization role of the multiagent system, we can seek synchronization of all

aerial robots in the z direction. We shall refer to the additional synchronization roles like the one in the

example as the secondary synchronization roles of the multiagent system.

It should be noted that the problem formulation of [34, 35, 40, 43] inherently includes the primary

and secondary synchronization roles of the multiagent systems. However, for distributed controllers that do

not exchange their state variables through communication graphs, the linear cooperative output regulation

problem with primary and secondary synchronization roles has not been studied yet.

1.3 Control of Linear Multiagent Systems with Global and Local Objectives

With the system-theoretic advancements in distributed control of multiagent systems, groups of

agents are now able to utilize local information exchange for achieving a broad class of global objectives that

range from consensus to containment. Despite all the developments in the multiagent system literature, the

following fundamental question arises: How do some of the agents forming the multiagent system perform

their own local objectives, which are defined with respect to the global objective of the multiagent system,

without deteriorating the overall multiagent system’s global objective?

In fact, this question has been recently raised in [49] by the authors and system-theoretically ad-

dressed in [49] by providing five different distributed controllers (i.e., protocols) with comparable advan-

tages (see Tables I and II in [49]) for single-integrator agent dynamics when the global objective is leaderless

consensus. In [50], these controllers are slightly modified to achieve the leader-follower consensus as a

global objective. Furthermore, several experiments are conducted on a team of ground mobile robots with

these protocols. This experimental evaluation has shown that the third and fifth distributed controllers in

[49] and [50] outperform the other three for both leaderless and leader-follower consensus.

1.4 Contributions

In Chapter 2, we study the linear cooperative output regulation problem with the internal model

approach. Thus, our study is relevant to the studies in [1, 39], where they have proposed a distributed

dynamic state feedback control law incorporating a p-copy internal model of the system matrix of the

exosystem. Moreover, [39] extends the results in [1] to an output feedback control under an output feedback

stabilizability condition. Our contributions to this problem are as follows:
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• A considerable number of flaws in the results of [1, 39] is illustrated by counterexamples and fixed.

• The problem definition is slightly modified to show that the approach can also be useful when the

exosystem is not known exactly in practical applications.

• We not only consider a distributed dynamic state feedback control law but also a distributed dynamic

output feedback control law with local measurement output, where the output feedback stabilizability

is not assumed, and a distributed dynamic output feedback control law, where agents have no access to

their own states or outputs. For each control law, the solvability of the problem is investigated in two

steps. First, a global property, which requires both the dynamics of every agent and the communication

graph, is assumed and it is proved, under mild assumptions, that the problem is solved. Second, an

agent-wise local sufficient condition, which paves the way for independent controller design for each

agent, is provided to ensure the global property under standard assumptions.

• The proof technique utilized in the first step does not decompose the matrix equations that are crucial

for the solvability of the problem, unlike the technique in [1, 39]. This helps us to weaken the

assumptions of the first step.

It is worth noting that the proposed distributed controllers also solve the robust cooperative output

regulation problem considered in [33, 37] for heterogeneous uncertain linear multiagent systems owing to

the incorporation of a p-copy internal model of the system matrix of the exosystem into the controllers.

Therefore, they are superior to the ones in [34, 35, 38, 40, 42–44], which use the feedforward approach,

in terms of handling the plant uncertainties. Furthermore, with the proposed distributed control laws, each

agent does not need the exchange of its controller’s state variables. Instead, it makes use of relative output

information between itself and its neighbors. Hence, the proposed controllers can be more practical than the

controllers in [34, 35, 40, 43] when the agents are equipped with the sensors measuring the relative output.

In Chapter 3, the definition of the linear cooperative output regulation problem is updated to allow

not only the primary synchronization role but also a secondary synchronization role for a distributed dynamic

state feedback control law that does not rely on the exchange of its state variables. Similar to Chapter 2, the

solvability of the updated problem is investigated by employing the internal model approach and a small-

gain theorem.
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In Chapter 4, we study distributed control problems for high-order linear time-invariant multia-

gent systems with both global and local objectives over fixed directed communication graphs. While the

considered global objective is to solve a typical leaderless synchronization or synchronization to a leader

problem, local objectives for a subset of agents are tasks determined by agent-specific dynamical systems

around the synchronization mapping of the global objective. Based on the existing synchronization results

of [6] and [19], we construct (distributed) reference model, which achieves the global objective, for each

agent. Building on the harmony of global and local objectives considered in [49] together with the third and

fifth protocols of [49] and [50] for single-integrator agent dynamics, we introduce two classes of distributed

controllers for high-order linear time-invariant agent dynamics and define the problems to be addressed. We

then solve them by utilizing the converging-input converging-state property for a class of linear systems and

the feedforward approach.

6
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Chapter 2: A Distributed Control Approach for Heterogeneous Linear Multiagent Systems1

This paper considers an internal model based distributed control approach to the cooperative output

regulation problem of heterogeneous linear time-invariant multiagent systems over fixed directed commu-

nication graph topologies. First, a new definition of the linear cooperative output regulation problem is

introduced in order to allow a broad class of functions to be tracked and rejected by a network of agents.

Second, the solvability of this problem with three distributed control laws, namely dynamic state feedback,

dynamic output feedback with local measurement, and dynamic output feedback, is investigated by first

considering a global condition and then providing an agent-wise local sufficient condition under standard

assumptions. Finally, two numerical examples are provided to illustrate the selected contributions of this

paper.

2.1 Introduction

Heterogeneous multiagent systems formed by networks of agents having different dynamics and

dimensions present a significantly broader class of multiagent systems than their heterogeneous and homo-

geneous counterparts that consist of networks of agents having different dynamics with the same dimension

and identical dynamics, respectively. Therefore, analysis and synthesis of distributed control approaches for

this class of multiagent systems that rely on local information exchange has been an attractive research topic

in the systems and control field over the last decade.

In particular, the cooperative output regulation problem of heterogeneous (in dynamics and dimen-

sion) linear time-invariant multiagent systems, where the output of all agents synchronize to the output of

the leader, over general fixed directed communication graph topologies have been recently investigated in

[1, 34, 35, 38, 39, 42, 43]. This problem can be regarded as the generalization of the linear output regulation

problem given in, for example, [25] to multiagent systems. As a consequence, distributed control approaches

to this regulation problem can be classified into two categories:

1This chapter is previously published in [51]. Permission is included in Appendix E.

7



www.manaraa.com

• The first category is predicated on feedforward design methodology, where the authors of [34, 35, 38,

42, 43] present contributions. In the presence of plant uncertainties, however, this methodology is

known to be not robust since the feedforward gain of each agent relies on the solution of the regulator

equations.

• The second category is predicated on internal model principle, where the authors of [1, 39] present

contributions. While this methodology is robust with respect to small variations of the plant parame-

ters as compared to feedforward design methodology, it cannot be applied when the transmission zero

condition does not hold.

The common denominator of these papers is that an exosystem, which has an unforced linear time-

invariant dynamics, generates both a reference trajectory and external disturbances to be tracked and rejected

by networks of agents. Specifically, the system matrix of the exosystem is explicitly used by controllers of

all agents in [34, 35, 38, 42] and a proper subset of agents in [43]; or each agent incorporates a p-copy

internal model of this matrix in its controller [1, 39].

2.1.1 Contributions

Considering applications of the distributed control approaches in [1, 34, 35, 38, 39, 42, 43], it

can be a challenge to precisely know the system matrix of the exosystem, even the dynamical structure

of the exosystem; especially, when an external leader interacts with the network of agents or a control

designer simply injects optimized trajectory commands to the network based on, for example, an online

path planning algorithm. In order to guarantee ultimately bounded tracking error in such cases, a new,

generalized definition for the cooperative output regulation problem is needed.

This paper focuses on heterogeneous (in dynamics and dimension) linear time-invariant multiagent

systems over general fixed directed communication graph topologies. First, we present the generalized

definition for the linear cooperative output regulation problem. Second, we investigate the solvability

of this problem for internal model based distributed dynamic state feedback, output feedback with local

measurement, and output feedback control laws. To this end, we not only consider global conditions but

also provide agent-wise local sufficient conditions under standard assumptions. Considering large-scale

applications of multiagent systems, the agent-wise local sufficient conditions are primarily important for

independent controller design of each agent (i.e., without depending on the dynamics of other agents).
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The system-theoretical approach presented in this paper2 is relevant to the studies in [1, 39], where

they also focus on the linear cooperative output regulation problem with an internal model based distributed

dynamic state feedback control law. Specifically, [39] extends the approach in [1] to an output feedback

control under an output feedback stabilizability condition. In addition to the generalized definition of the

linear cooperative output regulation problem, the contribution of this paper differs from the studies in [1, 39]

based on the following points:

• First, we note that the theoretical contribution of this paper covers not only the dynamic state feedback

problem but also the dynamic output feedback problem with local measurement as well as the dynamic

output feedback problem. Unlike the results presented in [39], this paper does not assume the output

feedback stabilizability for the dynamic output feedback problem with local measurement. With

regard to the dynamic output feedback problem, the results of this paper does not require agents to

access their own states or outputs.

• To prove the existence of a unique solution to the matrix equations that are crucial for the solvability

of the problem, Section III in [1] (Theorem 4 in [39]) decomposes these matrix equations, which

consist of the overall dynamics of the multiagent system, into matrix equations, which deal with the

dynamics of each agent separately. In contrast, we do not decompose these matrix equations; see the

sixth paragraph of Appendix A for the advantage. In particular, Lemma 2.4.3 of this paper, which

is also applicable to dynamic output feedback cases, guarantees that these matrix equations have a

unique solution without requiring their decompositions.

• A considerable number of gaps in the related results of [1, 39] is illustrated by counterexamples in

Appendices A and B and fixed in Appendices A and B as well as in Section 2.4.1.

2.1.2 Organization

The rest of the paper is organized as follows. Section 2.2 presents the notation and the essential

mathematical preliminaries. Section 2.3 formulates the linear cooperative output regulation problem con-

sidered in this paper. The solvability of this problem is investigated in Section 2.4 and two illustrative

numerical examples are presented in Section 2.5. Finally, Section 2.6 concludes the paper.

2Although they are not completely related, [52, 53] may be regarded as preliminary works of this paper.
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2.2 Mathematical Preliminaries

A standard notation is used in this paper. Specifically, R, Rn, and Rn×m respectively denote the sets

of all real numbers, n× 1 real column vectors, and n×m real matrices3; 1n and In respectively denote the

n×1 vector of all ones and the n×n identity matrix; and “,” denotes equality by definition. We write (·)T

for the transpose and ‖ · ‖2 for the induced two norm of a matrix; σ(·) for the spectrum4 and ρ(·) for the

spectral radius of a square matrix; (·)−1 for the inverse of a nonsingular matrix; and ⊗ for the Kronecker

product. We also write A≤ B for A ∈Rn×m, B ∈Rn×m if entries ai j ≤ bi j for all ordered pairs (i, j). Finally,

diag(A1, . . . ,An) is a block-diagonal matrix with matrix entries A1, . . . ,An on its diagonal.

We now concisely state the graph theoretical notation used in this paper, which is based on [5].

In particular, consider a fixed (i.e., time-invariant) directed graph G = (V,E), where V =
{

v1, . . . ,vN
}

is a

nonempty finite set of N nodes and E ⊂ V ×V is a set of edges. Each node in V corresponds to a follower

agent. There is an edge rooted at node v j and ended at vi (i.e., (v j,vi) ∈ E) if and only if vi receives

information from v j. A = [ai j] ∈ RN×N denotes the adjacency matrix, which describes the graph structure;

that is, ai j > 0⇔ (v j,vi) ∈ E and ai j = 0 otherwise. Repeated edges and self loops are not allowed; that is,

aii = 0, ∀i ∈N with N =
{

1, . . . ,N
}

. The set of neighbors of node vi is denoted as Ni =
{

j | (v j,vi) ∈ E
}

.

In-degree matrix is defined by D = diag(d1, . . . ,dN) with di = ∑ j∈Ni ai j. A directed path from node vi to

node v j is a sequence of successive edges in the form
{
(vi,vp),(vp,vq), . . . ,(vr,v j)

}
. If vi = v j, then the

directed path is called a loop. A directed graph is said to have a spanning tree if there is a root node such

that it has directed paths to all other nodes in the graph. A fixed augmented directed graph is defined as

Ḡ = (V̄, Ē), where V̄ =
{

v0,v1, . . . ,vN
}

is the set of N +1 nodes, including leader node v0 and all nodes in

V , and Ē = E ∪E ′ is the set of edges with E ′ consisting of some edges in the form of (v0,vi), i ∈N .

The concept of internal model introduced next slightly modifies Definition 1.22 and Remark 1.24

in [25].

Definition 2.2.1 Given any square matrix A0, a triple of matrices (M1,M2,M3) is said to incorporate a

p-copy internal model of the matrix A0 if

M1 = T

S1 S2

0 G1

T−1, M2 = T

S3

G2

 , M3 = T

S4

0

 , (2.1)

3In this paper, all real matrices are defined over the field of complex numbers.
4We follow Definition 4.4.4 in [54].
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or

M1 = G1, M2 = G2, M3 = 0, (2.2)

where Sl, l = 1,2,3,4, is any matrix with an appropriate dimension, T is any nonsingular matrix with an

appropriate dimension, the zero matrix in M3 has as many rows as those of G1, and

G1 = diag(β1, . . . ,βp), G2 = diag(σ1, . . . ,σp),

where for l = 1, . . . , p, βl ∈ Rsl×sl and σl ∈ Rsl satisfy the following conditions:

a) The pair (βl,σl) is controllable.

b) The minimal polynomial of A0 is equal to the characteristic polynomial of βl .

2.3 Problem Formulation

Consider a system of N (follower) agents with heterogeneous linear time-invariant dynamics subject

to external disturbances over a fixed directed communication graph topology G. The dynamics of agent

i ∈N is given by

ẋi(t) = Aixi(t)+Biui(t)+δi(t), xi(0) = xi0, t ≥ 0,

yi(t) = Cixi(t)+Diui(t),

with state xi(t) ∈ Rni , input ui(t) ∈ Rmi , output yi(t) ∈ Rp, and external disturbance δi(t) = Eδiδ (t) ∈ Rni ,

where δ (t) ∈ Rqδ is a solution to the unknown disturbance dynamics with an initial condition. In addition,

the reference trajectory to be tracked is denoted by y0(t) = Rrr0(t) ∈ Rp, where r0(t) ∈ Rqr is a solution to

the unknown leader dynamics with an initial condition.

Let ω(t) , [rT
0 (t),δ

T(t)]T ∈ Rq be the solution of the unknown exosystem, where q = qr + qδ .

Instead of assuming that the exosystem has an unforced linear time-invariant dynamics with a known

system matrix (e.g., see [1, 34, 39]), we consider that the exosystem has an unknown dynamics. From this

perspective, the exosystem can represent any (e.g., linear or nonlinear) dynamics provided that its solution

is unique and satisfies the conditions given later in Assumptions 2.3.1 and 2.3.2.
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Define Ei , [0 Eδi ] and R , [Rr 0]. Furthermore, let ei(t) , yi(t)− y0(t) be the tracking error. We

can then write the dynamics of each agent and its tracking error as

ẋi(t) = Aixi(t)+Biui(t)+Eiω(t), xi(0) = xi0, t ≥ 0, (2.3)

ei(t) = Cixi(t)+Diui(t)−Rω(t). (2.4)

In this paper, the tracking error ei(t) is available to a nonempty proper subset of agents5. In particular, if

node vi observes the leader node v0, then there exists an edge (v0,vi) with weighting gain ki > 0; otherwise

ki = 0. Each agent has also access to the relative output error; that is, yi(t)− y j(t) for all j ∈ Ni. Similar to

[39], the local virtual tracking error can be defined as

evi(t) ,
1

di + ki

[
∑
j∈Ni

ai j
(
yi(t)− y j(t)

)
+ ki

(
yi(t)− y0(t)

)]
. (2.5)

Now, we define three classes of distributed control laws based on additional available information

to each agent:

1) Dynamic State Feedback. If each agent has full access to its own state xi(t), then the dynamic

state feedback control law is given by

ui(t) = K1ixi(t)+K2izi(t), (2.6)

żi(t) = G1izi(t)+G2ievi(t), zi(0) = zi0, t ≥ 0, (2.7)

where zi(t) ∈ Rnz1i is the controller state and the quadruple (K1i,K2i,G1i,G2i) is specified in Section 2.4.1.

2) Dynamic Output Feedback with Local Measurement. If each agent has local measurement output

ymi(t) ∈ Rpi of the form

ymi(t) = Cmixi(t)+Dmiui(t), (2.8)

then the dynamic output feedback control law with local measurement is given by

5If all agents observe the leader, decentralized controllers can be designed for each agent even though the distributed
controllers proposed here are still applicable.
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ui(t) = K̄izi(t), (2.9)

żi(t) = M1izi(t)+M2ievi(t)+M3iymi(t), zi(0) = zi0, t ≥ 0, (2.10)

where zi(t) ∈ Rnz2i is the controller state and the quadruple (K̄i,M1i,M2i,M3i) is specified in Section 2.4.2.

3) Dynamic Output Feedback. If each agent does not have additional information; that is, the local

virtual tracking error evi(t) is the only available information to it, then the dynamic output feedback control

law is given by

ui(t) = K̄izi(t), (2.11)

żi(t) = M1izi(t)+M2ievi(t), zi(0) = zi0, t ≥ 0, (2.12)

where zi(t) ∈ Rnz2i is the controller state and the triple (K̄i,M1i,M2i) is specified in Section 2.4.3.

We now introduce the first and the second assumptions before defining the problem.

Assumption 2.3.1 A0 ∈ Rq×q has no eigenvalues with negative real parts.

Assumption 2.3.2 There exists κ > 0 such that

‖A0ω(t)− ω̇(t)‖2 ≤ κ < ∞, ∀t ≥ 0,

where ω̇(t) is a piecewise continuous function6 of t.

Assumption 2.3.1 is standard in linear output regulation theory (e.g., see Remark 1.3 in [25]).

Assumption 2.3.2 is required to show the ultimate boundedness of the tracking error and it automatically

holds if the exosystem has an unforced linear time-invariant dynamics with the system matrix A0. Note that

these assumptions do not imply the exact knowledge of the exosystem. We refer to Remarks 2.4.2 and 2.4.3

for further discussions and Section 2.5 for illustrative examples on this point.

Based on the definition of the linear cooperative output regulation problem in [1, 34], the problem

considered in this paper is defined as follows.

6We follow the definition given in page 650 of [55].
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Definition 2.3.1 Given the system in (2.3) and (2.4) together with the exosystem, which satisfies Assump-

tions 2.3.1 and 2.3.2, and the fixed augmented directed graph Ḡ, find a distributed control law of the form

(2.6) and (2.7), or (2.9) and (2.10), or (2.11) and (2.12) such that:

a) The resulting closed-loop system matrix is Hurwitz.

b) The tracking error ei(t) is ultimately bounded with ultimate bound b for all initial conditions of

the closed-loop system and for all i ∈ N ; that is, there exists b > 0 and for each initial condition of the

closed-loop system, there is T ≥ 0 such that ‖ei(t)‖2 ≤ b, ∀t ≥ T, ∀i ∈N .

c) If limt→∞ A0ω(t)−ω̇(t)= 0, then for all initial conditions of the closed-loop system limt→∞ ei(t)=

0, ∀i ∈N .

This paper makes the following additional assumptions to solve this problem.

Assumption 2.3.3 The fixed augmented directed graph Ḡ has a spanning tree with the root node being the

leader node.

Assumption 2.3.4 The pair (Ai,Bi) is stabilizable for all i ∈N .

Assumption 2.3.5 For all λ ∈ σ(A0),

rank

Ai−λ Ini Bi

Ci Di

= ni + p, ∀i ∈N .

Assumption 2.3.6 As in (2.2), the triple (G1i,G2i,0) incorporates a p-copy internal model of A0 for all

i ∈N .

Assumption 2.3.7 The pair (Ai,Cmi) is detectable for all i ∈N .

Assumption 2.3.8 The pair (Ai,Ci) is detectable for all i ∈N .

Assumption 2.3.3 is natural to solve the stated problem (e.g., see Remark 3.2 in [5]). Similar to

Assumption 2.3.1, Assumptions 2.3.4-2.3.8 are standard in linear output regulation theory (e.g., see Chapter

1 of [25]). We use Assumptions 2.3.1-2.3.6 for dynamic state feedback. To utilize some results from

dynamic state feedback in the absence of full state information, each agent requires the estimation of its own

state. For this purpose, Assumption 2.3.7 and Assumption 2.3.8 are included for dynamic output feedback

with local measurement and dynamic output feedback, respectively.
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2.4 Solvability of the Problem

For the three different distributed control laws introduced in Section 2.3, this section investigates

the solvability of the problem given in Definition 2.3.1. Specifically, the approach in this section is twofold.

First, the property a) of Definition 2.3.1 is assumed and it is shown, under mild conditions, that the properties

b) and c) of Definition 2.3.1 are satisfied. Second, an agent-wise local sufficient condition (i.e., distributed

criterion) is provided for the property a) of Definition 2.3.1 (i.e., the stability of the closed-loop system

matrix) under standard assumptions.

Before studying the solvability of the problem for each distributed control law, we now present

some definitions that are used throughout this section to express the closed-loop systems in compact forms,

some results related to the communication graph topology, and a key lemma about the solvability of matrix

equations, which play a crucial role on the solvability of the problem.

Define the following matrices: Φ, diag(Φ1, . . . ,ΦN), Φ=A,B,C,D,E; Φm, diag(Φm1, . . . ,ΦmN),

Φ =C,D; Kl , diag(Kl1, . . . ,KlN), l = 1,2; A0a , IN⊗A0, and Ra , IN⊗R. Further, let x(t), [xT
1 (t), . . . ,

xT
N(t)]

T ∈ Rn̄, where n̄ = ∑
N
i=1 ni; e(t) , [eT

1 (t), . . . ,e
T
N(t)]

T ∈ RN p, ev(t) , [eT
v1(t), . . . ,e

T
vN(t)]

T ∈ RN p, and

ωa(t), 1N⊗ω(t) ∈ RNq.

Observing yi(t)−y j(t) = ei(t)−e j(t) and recalling di = ∑ j∈Ni ai j, (2.5) can be equivalently written

as

evi(t) = ei(t)−
1

di + ki
∑
j∈Ni

ai je j(t). (2.13)

Let F , diag
(

1
d1+k1

, . . . , 1
dN+kN

)
andW , (IN−FA)⊗ Ip. Here, it should be noted that di+ki > 0, ∀i ∈N

by Assumption 2.3.3; hence, F is well-defined. From (2.13), we have

ev(t) = We(t). (2.14)

Similar to Lemma 3.3 in [5], we next present the following lemma for IN−FA.

Lemma 2.4.1 Under Assumption 2.3.3, IN −FA is nonsingular. In addition, all its eigenvalues have

positive real parts.
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Proof. Under Assumption 2.3.3, IN−FA satisfies the conditions of the theorem in [56]. Thus, it is

nonsingular. Since the singularity is eliminated, all the eigenvalues of IN −FA have positive real parts by

the Gershgorin circle theorem (e.g., see Fact 4.10.17 in [54]). �

Remark 2.4.1 Since IN−FA is nonsingular under Assumption 2.3.3, so isW by Proposition 7.1.7 in [54].

Then, it is clear from (2.14) that ei(t) is bounded for all i ∈N if and only if evi(t) is bounded for all i ∈N ;

limt→∞ ei(t) = 0, ∀i ∈N if and only if limt→∞ evi(t) = 0, ∀i ∈N .

We now investigate the spectral radius of FA.

Lemma 2.4.2 Under Assumption 2.3.3, ρ(FA)< 1.

Proof. By Lemma 2.4.1, all the eigenvalues of IN −FA have positive real parts under Assumption

2.3.3. This directly implies from Fact 6.2.1.4 in [57] that the leading principal minors of IN −FA are all

positive as IN −FA is a square matrix whose off-diagonal elements are all nonpositive. Since FA is a

nonnegative square matrix and the leading principal minors of IN −FA are all positive, ρ(FA) < 1 from

Lemma 6.2.1.8 in [57]. �

Finally, we introduce the key lemma that extends the field of application of Lemma 1.27 in [25]

to heterogeneous (in dynamics and dimension) linear time-invariant multiagent systems over general fixed

directed communication graph topologies.

Lemma 2.4.37 Let Assumptions 2.3.1 and 2.3.3 hold. Suppose the triple (M1,M2,M3) incorporates an N p-

copy internal model of A0a. If

Ac ,

 Â B̂

M2WĈ+M3Ĉm M1 +M2WD̂+M3D̂m


is Hurwitz, where Â, B̂, Ĉ, Ĉm, D̂, and D̂m are any matrices with appropriate dimensions, then the matrix

equations

XA0a = ÂX + B̂Z + Ê, (2.15)

ZA0a = M1Z +M2W(ĈX + D̂Z + F̂)+M3(ĈmX + D̂mZ), (2.16)

7To investigate the solvability of a matrix equation that is obtained for a different problem setting with the distributed
dynamic state feedback control law, the authors of [58] utilized the same logic in the proof of Lemma 2.4.3 (see Section 3.1 in
[58]).
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have unique solutions X and Z for any matrices Ê and F̂ of appropriate dimensions. Furthermore, X and Z

satisfy

0 = ĈX + D̂Z + F̂ . (2.17)

In other words, the conclusion is that the matrix equations

XcA0a = AcXc +Bc, (2.18)

0 = CcXc +Dc, (2.19)

have a unique solution Xc, where

Xc =

X

Z

 , Bc =

 Ê

M2WF̂

 , Cc =

[
Ĉ D̂

]
, Dc = F̂ .

Proof. Note that (2.15) and (2.16) (respectively, (2.17)) can be equivalently written as (2.18)

(respectively, (2.19)). Note also that σ(A0a) = σ(A0). Since Assumption 2.3.1 holds and Ac is Hurwitz,

A0a and Ac have no eigenvalues in common. Thus, the Sylvester equation in (2.18) has a unique solution

Xc = [XT ZT]T by the first part of Proposition A.2 in [25]. In addition, we show that X and Z also satisfy

(2.17). To this end, let γ̄ , ĈX + D̂Z + F̂ . Since the triple (M1,M2,M3) incorporates an N p-copy internal

model of A0a, it has the form given by (2.1) or (2.2). If it takes the form (2.1), let [θ̂ T θ̄ T]T , T−1Z, where

θ̄ has as many rows as those of G1. Premultiplying (2.16) by T−1 and using the foregoing definitions, we

obtain

θ̄A0a = G1θ̄ +G2W γ̄. (2.20)

Note that if the triple (M1,M2,M3) takes the form (2.2), (2.16) already satisfies (2.20), where θ̄ = Z. Let

γ ,W γ̄; then, (2.20) is in the form of (1.74) in [25]. Hence, γ = 0 by the proof of Lemma 1.27 in [25]. We

know from Remark 2.4.1 thatW is nonsingular under Assumption 2.3.3. As a consequence, γ = 0 implies

γ̄ = 0. This completes the proof of this lemma. �
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2.4.1 Dynamic State Feedback

Let z(t) , [zT
1 (t), . . . ,z

T
N(t)]

T ∈ Rn̄z1 , where n̄z1 = ∑
N
i=1 nz1i , and Gl , diag(Gl1, . . . ,GlN), l = 1,2.

Inserting (2.6) into (2.3) and (2.4), and using the above definitions, (2.3), (2.7), and (2.4) can be compactly

written as

ẋ(t) = (A+BK1)x(t)+BK2z(t)+Eωa(t), x(0) = x0, t ≥ 0, (2.21)

ż(t) = G1z(t)+G2ev(t), z(0) = z0, t ≥ 0, (2.22)

e(t) = (C+DK1)x(t)+DK2z(t)−Raωa(t). (2.23)

Next, insert (2.23) into (2.14) and replace the obtained expression with the one in (2.22). Define xg(t) ,

[xT(t),zT(t)]T ∈ Rn̄+n̄z1 . Then, the closed-loop system of (2.3)-(2.7) becomes

ẋg(t) = Agxg(t)+Bgωa(t), xg(0) = xg0, t ≥ 0, (2.24)

e(t) = Cgxg(t)+Dgωa(t), (2.25)

where

Ag =

 A+BK1 BK2

G2W(C+DK1) G1 +G2WDK2

 , Bg =

 E

−G2WRa

 ,
Cg =

[
C+DK1 DK2

]
, Dg =−Ra.

Theorem 2.4.1 Let Assumptions 2.3.1-2.3.3 and 2.3.6 hold. If Ag is Hurwitz, then the distributed dynamic

state feedback control given by (2.6) and (2.7) solves the problem in Definition 2.3.1.

Proof. By the definition of A0a, the minimal polynomials for A0a and A0 are the same. Thus, the triple

(G1,G2,0) incorporates an N p-copy internal model of A0a under Assumption 2.3.6. Let (M1,M2,M3) ,

(G1,G2,0). Let also Â, A+BK1, B̂, BK2, Ĉ,C+DK1, Ĉm , 0, D̂,DK2, D̂m , 0, Ê , E, and F̂ ,−Ra.

Then, the quadruple (Ag,Bg,Cg,Dg) takes the form of (Ac,Bc,Cc,Dc) in Lemma 2.4.3. In addition, Ag is

Hurwitz and Assumptions 2.3.1 and 2.3.3 hold. Hence, Lemma 2.4.3 is applicable and it implies that the
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matrix equations

XgA0a = AgXg +Bg, (2.26)

0 = CgXg +Dg, (2.27)

have a unique solution Xg. We also refer to Appendix A for additional discussions on the solvability of

(2.26) and (2.27).

Under Assumption 2.3.2, ‖A0aωa(t)−ω̇a(t)‖2≤
√

Nκ, ∀t ≥ 0 since ‖A0aωa(t)−ω̇a(t)‖2
2=N‖A0ω(t)

− ω̇(t)‖2
2. Let x̄g(t) , xg(t)−Xgωa(t). Then, using the definition of x̄g(t) and (2.26) and (2.27), we can

rewrite (2.24) and (2.25) as

˙̄xg(t) = Agx̄g(t)+Xg(A0aωa(t)− ω̇a(t)), x̄g(0) = x̄g0, t ≥ 0, (2.28)

e(t) = Cgx̄g(t). (2.29)

Now, the solution of (2.28) can be written as

x̄g(t) = eAgt x̄g0 +
∫ t

0
eAg(t−τ)Xg(A0aωa(τ)− ω̇a(τ))dτ.

Since Ag is Hurwitz, there exist c > 0 and α > 0 such that ‖eAgt‖2 ≤ ce−αt , ∀t ≥ 0 (e.g., see Lecture 8.3 in

[59]). Owing to this bound and the bound on ‖A0aωa(t)− ω̇a(t)‖2, we have the following inequality

‖x̄g(t)‖2 ≤ ce−αt‖x̄g0‖2 +
c‖Xg‖2

α

√
Nκ, ∀t ≥ 0.

Using the fact ‖ei(t)‖2 ≤ ‖e(t)‖2, ∀i ∈N and observing ‖e(t)‖2 ≤ ‖Cg‖2‖x̄g(t)‖2 from (2.29), we arrive

‖ei(t)‖2 ≤ ce−αt‖Cg‖2‖x̄g0‖2 +b′, ∀t ≥ 0, ∀i ∈N ,

where b′ = c‖Cg‖2‖Xg‖2
√

Nκα−1. For a given ε > 0, we have either c‖Cg‖2‖x̄g0‖2 > ε or c‖Cg‖2‖x̄g0‖2 ≤

ε . In the former case, it can be readily shown that ce−αt‖Cg‖2‖x̄g0‖2≤ ε, ∀t ≥T with T=α−1ln
(

c‖Cg‖2‖x̄g0‖2
ε

)
> 0. In the latter case, the foregoing inequality trivially holds for all t ≥ 0. Thus, ei(t) is ultimately bounded

with the ultimate bound b, b′+ ε for all x̄g0, which is also true for all xg0, and for all i ∈N .

19



www.manaraa.com

If limt→∞ A0ω(t)− ω̇(t) = 0, then limt→∞ A0aωa(t)− ω̇a(t) = 0. Since Ag is Hurwitz and the system

in (2.28) is linear time-invariant when A0aωa(t)− ω̇a(t) is viewed as an input to the system, (2.28) is

input-to-state stable with respect to this piecewise continuous input (e.g., see Chapter 4.9 in [55]). Thus,

limt→∞ A0aωa(t)− ω̇a(t) = 0 implies limt→∞ x̄g(t) = 0 for all x̄g0 (e.g., see Exercise 4.58 in [55]). Finally, it

follows from (2.29) that for all xg0 limt→∞ ei(t) = 0, ∀i ∈N . �

Remark 2.4.2 The ultimate bound b of the tracking error for each agent is associated with the bound

κ in Assumption 2.3.2. Specifically, as κ decreases (respectively, increases), b decreases (respectively,

increases). To elucidate the role of Assumptions 2.3.1 and 2.3.2 in practice, we consider the following

possible scenarios:

a) When the piecewise continuity and boundedness of ω̇(t) are the only information that is available

to a control designer, the triple (0, Ip,0) incorporating a p-copy internal model of A0 = 0 is quite natural;

hence, (2.7) becomes a distributed integrator. Moreover, Xg in b can be explicitly expressed in terms of Ag

and Bg; that is, Xg =−A−1
g Bg by (2.26).

b) When the piecewise continuity and boundedness of ω̇(t), the boundedness of ω(t), and some

frequencies in ω(t) are available to a control designer, the triple (G1i,G2i,0) incorporating a p-copy

internal model of A0, which includes these frequencies and zero eigenvalues, is an alternative to the pure

distributed integrator.

Remark 2.4.3 As it is shown in Theorem 2.4.1, asymptotic synchronization is achieved when limt→∞ A0ω(t)

− ω̇(t) = 0. We now provide sufficient conditions to check this condition as follows8. If one of the following

conditions holds

a) ω̇(t) = A0ω(t), ω(0) = ω0, t ≥ 0;

b) limt→∞ eA0tω0−ω(t) = 0, where ω0 = ω(0), and A0eA0tω0− ω̇(t) is uniformly continuous on

[0,∞),

then limt→∞ A0ω(t)− ω̇(t) = 0. Note that a) clearly implies b). From Barbalat’s lemma given by Lemma

8.2 in [60], b) implies that limt→∞ A0eA0tω0− ω̇(t) = 0. Thus, limt→∞ A0ω(t)− ω̇(t) = A0 limt→∞ ω(t)−

eA0tω0 + limt→∞ A0eA0tω0− ω̇(t) = 0. In general, asymptotic synchronization results in the literature (e.g.,

see [1, 34, 39]) are obtained under the condition a). It is clear that this paper covers all class of functions

generated under the condition a).
8If A0 = 0, one should read limt→∞ ω̇(t) = 0 in place of limt→∞ A0ω(t)− ω̇(t) = 0; hence, ω(t) ≡ ω? (ω? is finite) in place

of a), and limt→∞ ω(t) = ω? and ω̇(t) is uniformly continuous on [0,∞) in place of b).
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To obtain an agent-wise local sufficient condition assuring the property a) of Definition 2.3.1 under

some standard assumptions, let ξi(t), [xT
i (t),z

T
i (t)]

T ∈ Rni+nz1i , µi(t), 1
di+ki

∑ j∈Ni ai je j(t),

Āi ,

 Ai 0

G2iCi G1i

 , B̄i ,

 Bi

G2iDi

 , Bfi ,

 0

−G2i

 ,
and C̄i , [Ci 0]. Furthermore, consider (2.3), (2.7), (2.13), and (2.4) when ω(t)≡ 0. We now have

ξ̇i(t) = Āiξi(t)+ B̄iui(t)+Bfiµi(t), ξi(0) = ξi0, t ≥ 0, (2.30)

ei(t) = C̄iξi(t)+Diui(t). (2.31)

Next, define the matrices

Afi ,

 Ai +BiK1i BiK2i

G2i(Ci +DiK1i) G1i +G2iDiK2i

 ,
Cfi ,

[
Ci +DiK1i DiK2i

]
.

Using (2.6), (2.30) and (2.31) can be written as

ξ̇i(t) = Afiξi(t)+Bfiµi(t), ξi(0) = ξi0, t ≥ 0, (2.32)

ei(t) = Cfiξi(t). (2.33)

Let, in addition, Ψf , diag(Ψf1, . . . ,ΨfN), Ψ = A,B,C and ξ (t), [ξ T
1 (t), . . . ,ξ

T
N (t)]

T. Then, (2.32)

and (2.33) can be put into the compact form given by

ξ̇ (t) = Afξ (t)+Bf(FA⊗ Ip)w̃(t), ξ (0) = ξ0, t ≥ 0, (2.34)

z̃(t) = Cfξ (t), (2.35)

where e(t) = w̃(t) = z̃(t). Observe that the system in (2.34) and (2.35) takes the form of (12) in [1].

Therefore, one may think of resorting Theorem 2 in [1] at first sight. However, the statement of Theorem 2

in [1] is not correct as it is written; we refer to Appendix B for a counterexample.
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This paragraph uses the notation and the terminology from [1]. Readers are referred to (12),

Theorem 1, Theorem 2, and Lemma 8 in [1]. It should be noted that Theorem 2 relies on Theorem 1 and

this theorem is derived by means of Theorem 11.8 and Lemma 11.2 in [61]. According to the mentioned

results and Chapter 5.3, which is devoted to the notion of internal stability for the system of interest, in [61],

it is clear that the following condition should be added to the hypotheses of Theorem 1: Let the realization

of T (s) given by (12) be stabilizable and detectable. With this modification, not only the theoretical gap

in Theorem 1 but also the one in Theorem 2 is filled. However, a simple point in the proof of Theorem

2 still needs to be clarified. The spectral radius of T̃ ( jω) in the proof of Theorem 2 is upper bounded by

applying Lemma 8. Since Lemma 8 is applied, we infer that diag(‖T1( jω)‖, . . . ,‖TN( jω)‖) is regarded as

a positive definite diagonal matrix, but its proof is not given. The foregoing diagonal matrix is necessarily

positive semidefinite; hence, we only question9 whether Ti(s) = 0 for some i. Instead of investigating the

corresponding realizations, we extend Lemma 8 to positive semidefinite diagonal matrices as follows.

Lemma 2.4.4 Let Q∈Rn×n be a nonnegative matrix. If Λ∈Rn×n is a positive semidefinite diagonal matrix,

then ρ(ΛQ)≤ ρ(Λ)ρ(Q).

Proof. Let Λ , diag(λ1, . . . ,λn) be positive semidefinite. If Λ = 0, the inequality holds trivially.

We therefore assume that there exists a λi > 0 for some i; hence, ρ(Λ) > 0. Let Λ̄ , diag(λ̄1, . . . , λ̄n),

where λ̄i = ρ(Λ) if λi = 0, λ̄i = λi otherwise. By construction, Λ ≤ Λ̄, ρ(Λ) = ρ(Λ̄), and Λ̄ is a positive

definite diagonal matrix. Since Λ≤ Λ̄ and Q is nonnegative, ΛQ≤ Λ̄Q. By the corollary in page 27 of [62],

ρ(ΛQ)≤ ρ(Λ̄Q). Applying Lemma 8 in [1] to Λ̄Q, we also have ρ(Λ̄Q)≤ ρ(Λ̄)ρ(Q). Since ρ(Λ) = ρ(Λ̄),

we establish the desired inequality. �

It is well known that the system in (2.34) and (2.35) is stabilizable and detectable if Af is Hurwitz.

Thus, the new condition is satisfied if Afi is Hurwitz for all i ∈N .

Remark 2.4.4 Assumptions 2.3.4-2.3.6 ensure the stabilizability of the pair (Āi, B̄i) for all i ∈N by Lemma

1.26 in [25]. Therefore, K1i and K2i can always be chosen such that Afi is Hurwitz for all i ∈N .

Let gfi(s),Cfi(sI−Afi)
−1Bfi. We now state the following theorem for the dynamic state feedback

case.

9Considering Kalman decomposition (e.g., see Theorem 16.3 in [59]), one can easily construct a linear time-invariant system
with Hurwitz system matrix, nonzero input and output matrices, and zero direct feedthrough matrix such that its transfer matrix is
zero.
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Theorem 2.4.2 Let Assumption 2.3.3 hold and Afi be Hurwitz for all i ∈N . If

‖gfi‖∞ ρ(FA)< 1, ∀i ∈N , (2.36)

where ‖gfi‖∞ is the H∞ norm of gfi(s), then Ag is Hurwitz.

Proof. It follows from Theorem 2 in [1] and the above discussion. �

Remark 2.4.5 The inequality given by (2.36) is an agent-wise local sufficient condition; that is, it paves

the way for independent controller design for each agent. For the connection between this condition and an

algebraic Riccati equation (respectively, linear matrix inequality), we refer to Lemma 9 in [1] (respectively,

Theorem 6 in [39]). Moreover, we know from Lemma 2.4.2 that ρ(FA) < 1 under Assumption 2.3.3.

Therefore, we can restate Theorem 2.4.2 by replacing (2.36) with ‖gfi‖∞ ≤ 1, ∀i ∈ N . In this statement,

although the condition becomes more conservative, it is not only agent-wise local but also graph-wise local

except Assumption 2.3.3. Finally, it should be noted that if the graph G considered in Theorem 2.4.2 contains

no loop (i.e., acyclic), then the nodes in G can be relabelled such that i > j when (v j,vi) ∈ E . Thus, A is

similar to a lower triangular matrix with zero diagonal entries, so is FA. This implies that ρ(FA) = 0;

hence, Theorem 2.4.2 does not require the condition given by (2.36) anymore. In terms of being agent-wise

and graph-wise local, this special case is consistent with the result in [33].

2.4.2 Dynamic Output Feedback with Local Measurement

Let zi(t) , [x̂T
i (t), z̄

T
i (t)]

T ∈ Rnz2i , where x̂i(t) is the estimate of the state xi(t), K̄i , [K1i K2i], and

(2.9) have the form given by

ui(t) = K1ix̂i(t)+K2iz̄i(t). (2.37)

To estimate the state xi(t), the following local Luenberger observer is employed

˙̂xi(t) = Aix̂i(t)+Biui(t)+Hi
(
ymi(t)−Cmix̂i(t)−Dmiui(t)

)
, x̂i(0) = x̂i0, t ≥ 0, (2.38)
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where Hi is the observer gain matrix. Using (2.37), we can write (2.38) as

˙̂xi(t) =
(
Ai +BiK1i−Hi(Cmi +DmiK1i)

)
x̂i(t)+Hiymi(t)+(Bi−HiDmi)K2iz̄i(t),

x̂i(0) = x̂i0, t ≥ 0. (2.39)

Let also z̄i(t) evolve according to the dynamics given by

˙̄zi(t) = G1iz̄i(t)+G2ievi(t), z̄i(0) = z̄i0, t ≥ 0. (2.40)

By (2.39) and (2.40), one can define the triple (M1i,M2i,M3i) in (2.10) as

M1i ,

Ai +BiK1i−Hi(Cmi +DmiK1i) (Bi−HiDmi)K2i

0 G1i

 ,
M2i ,

 0

G2i

 , M3i ,

Hi

0

 . (2.41)

Using (2.8) and (2.37), (2.38) can be rewritten as

˙̂xi(t) = HiCmixi(t)+(Ai +BiK1i−HiCmi)x̂i(t)+BiK2iz̄i(t), x̂i(0) = x̂i0, t ≥ 0. (2.42)

Next, define x̂(t), [x̂T
1 (t), . . . , x̂

T
N(t)]

T, z̄(t), [z̄T
1 (t), . . . , z̄

T
N(t)]

T, and H , diag(H1, . . . ,HN). Insert-

ing (2.37) into (2.3) and (2.4), using (2.42), (2.40), and the above definitions, (2.3), (2.10), and (2.4) can be

compactly written as

ẋ(t) = Ax(t)+BK1x̂(t)+BK2z̄(t)+Eωa(t), x(0) = x0, t ≥ 0, (2.43)

˙̂x(t) = HCmx(t)+(A+BK1−HCm)x̂(t)+BK2z̄(t), x̂(0) = x̂0, t ≥ 0, (2.44)

˙̄z(t) = G1z̄(t)+G2ev(t), z̄(0) = z̄0, t ≥ 0, (2.45)

e(t) = Cx(t)+DK1x̂(t)+DK2z̄(t)−Raωa(t). (2.46)

Now, insert (2.46) into (2.14) and replace the obtained expression with the one in (2.45). Let η(t) ,

[xT(t), x̂T(t), z̄T(t)]T ∈ Rn̄+n̄z2 , where n̄z2 = ∑
N
i=1 nz2i . Then, the closed-loop system of (2.3)-(2.5) and (2.8)-
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(2.10) can be represented as

η̇(t) = Aηη(t)+Bηωa(t), η(0) = η0, t ≥ 0, (2.47)

e(t) = Cηη(t)+Dηωa(t), (2.48)

where

Aη =


A BK1 BK2

HCm A+BK1−HCm BK2

G2WC G2WDK1 G1 +G2WDK2

 ,

Bη =


E

0

−G2WRa

 , Cη =

[
C DK1 DK2

]
, Dη =−Ra.

For the following result, we define AHi , Ai−HiCmi and AH , A−HCm. By Assumption 2.3.7, Hi

can always be chosen such that AHi is Hurwitz for all i ∈N .

Theorem 2.4.3 Let Assumptions 2.3.1-2.3.3 and 2.3.6 hold. If Ag is Hurwitz and AHi is Hurwitz for all

i ∈ N , then the distributed dynamic output feedback control with local measurement given by (2.9) and

(2.10) solves the problem in Definition 2.3.1.

Proof. Let K , [K1 K2], Â, A, B̂, BK, Ĉ ,C, Ĉm ,Cm, D̂, DK, D̂m , DmK, Ê , E, F̂ ,−Ra,

M1 ,

A+BK1−H(Cm +DmK1) (B−HDm)K2

0 G1

,
M2 ,

 0

G2

 , M3 ,

H

0

 . (2.49)

Now, observe that the quadruple (Aη ,Bη ,Cη ,Dη) takes the form of (Ac,Bc,Cc,Dc) in Lemma 2.4.3. Recall

from the proof of Theorem 2.4.1 that the triple (G1,G2,0) incorporates an N p-copy internal model of A0a

under Assumption 2.3.6. This clearly implies that the triple (M1,M2,M3) also incorporates an N p-copy

internal model of A0a. It is given that Assumptions 2.3.1 and 2.3.3 hold. In order to apply Lemma 2.4.3, we

need to show that Aη is Hurwitz under the conditions that Ag is Hurwitz and AHi is Hurwitz for all i ∈ N .
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To this end, the following elementary row and column operations are performed on Aη . First, subtract row

1 from row 2 and add column 2 to column 1. Second, interchange rows 2 and 3, and interchange columns 2

and 3. Thus, we obtain the matrix given by

Āη ,


A+BK1 BK2 BK1

G2W(C+DK1) G1 +G2WDK2 G2WDK1

0 0 AH

.

Considering the performed elementary row and column operations, one can verify that Aη is similar to Āη ;

hence, they have the same eigenvalues. Since Āη is upper block triangular, σ(Āη) = σ(Ag)∪σ(AH). Note

that AH is Hurwitz as AHi is Hurwitz for all i ∈ N . It is also given that Ag is Hurwitz. Thus, Aη is Hurwitz.

Then, the matrix equations

XηA0a = AηXη +Bη ,

0 = CηXη +Dη ,

have a unique solution Xη by Lemma 2.4.3.

Following similar steps to those in the proof of Theorem 2.4.1, it can be shown under Assumption

2.3.2 that ei(t) is ultimately bounded with an ultimate bound for all η0 and for all i ∈ N . If, in addition,

limt→∞ A0ω(t)− ω̇(t) = 0, then for all η0 limt→∞ ei(t) = 0, ∀i ∈N . �

Remark 2.4.6 Since the condition on AHi is both agent-wise and graph-wise local, obtaining an agent-wise

local sufficient condition that ensures the property a) of Definition 2.3.1 boils down to finding an agent-wise

local sufficient condition, under standard assumptions, for the stability of Ag, which is already given in

Theorem 2.4.2.

2.4.3 Dynamic Output Feedback

Define zi(t), K̄i, and ui(t) as in Section 2.4.2; that is, (2.11) has the form (2.37). Since evi(t) is the

only available information to each agent, the following distributed observer is considered instead of (2.39)
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to estimate the state xi(t)

˙̂xi(t) =
(
Ai +BiK1i−Li(Ci +DiK1i)

)
x̂i(t)+Lievi(t)+(Bi−LiDi)K2iz̄i(t),

x̂i(0) = x̂i0, t ≥ 0, (2.50)

where Li is the observer gain matrix. Let z̄i(t) satisfy the dynamics in (2.40). We can now define the pair

(M1i,M2i) in (2.12) by replacing the triple (Hi,Cmi,Dmi) in M1i (respectively, the zero matrix in M2i) given

by (2.41) with (Li,Ci,Di) (respectively, Li).

Define x̂(t) and z̄(t) as in the previous subsection and L , diag(L1, . . . ,LN). Inserting (2.37) into

(2.3) and (2.4), using (2.50), (2.40), and the above definitions, (2.3), (2.12), and (2.4) can be expressed by

(2.43),

˙̂x(t) =
(
A+BK1−L(C+DK1)

)
x̂(t)+(B−LD)K2z̄(t)+Lev(t), x̂(0) = x̂0, t ≥ 0, (2.51)

(2.45), and (2.46). Next, insert (2.46) into (2.14) and replace the obtained expression not only with the one

in (2.45) but also with the one in (2.51). In addition, define η(t) as in Section 2.4.2. Then, the closed-loop

system of (2.3)-(2.5), (2.11), and (2.12) can be expressed by (2.47) and (2.48) if the second row of Aη is

replaced with

[
LWC A+BK1−L(C+DK1−WDK1) (B−LD+LWD)K2

]

and the second row of Bη is replaced with −LWRa.

Theorem 2.4.4 Let Assumptions 2.3.1-2.3.3 and 2.3.6 hold. If the resulting Aη is Hurwitz, then the dis-

tributed dynamic output feedback control given by (2.11) and (2.12) solves the problem in Definition 2.3.1.

Proof. Define K, Â, B̂, Ĉ, D̂, Ê, and F̂ as in the proof of Theorem 2.4.3. Let Ĉm , 0, D̂m , 0,

and M3 , 0. Define also the pair (M1,M2) by replacing the triple (H,Cm,Dm) in M1 (respectively, the zero

matrix in M2) given by (2.49) with (L,C,D) (respectively, L). Then, observe that the resulting quadruple

(Aη ,Bη ,Cη ,Dη) takes the form of (Ac,Bc,Cc,Dc) in Lemma 2.4.3. By the same argument in the proof

of Theorem 2.4.3, the resulting triple (M1,M2,M3) incorporates an N p-copy internal model of A0a under
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Assumption 2.3.6. Since, in addition, Assumptions 2.3.1-2.3.3 hold and Aη is Hurwitz, the rest of the proof

can be completed by following the steps given in the proof of Theorem 2.4.1. �

Now, our goal is to obtain an agent-wise local sufficient condition that assures the property a) of

Definition 2.3.1 under some standard assumptions. For this purpose, define µi(t) as in Section 2.4.1 and let

ζi(t), [xT
i (t), x̂

T
i (t), z̄

T
i (t)]

T ∈ Rni+nz2i ,

AFi ,


Ai BiK1i BiK2i

LiCi Ai +BiK1i−LiCi BiK2i

G2iCi G2iDiK1i G1i +G2iDiK2i

 ,

BFi ,


0

−Li

−G2i

 , CFi ,

[
Ci DiK1i DiK2i

]
.

Furthermore, consider (2.3), (2.12), (2.13), and (2.4) when ω(t)≡ 0. By inserting (2.11) into the considered
equations, we have

ζ̇i(t) = AFiζi(t)+BFiµi(t), ζi(0) = ζi0, t ≥ 0, (2.52)

ei(t) = CFiζi(t). (2.53)

Remark 2.4.7 Let ALi , Ai−LiCi. By performing the elementary row and column operations given in the

proof of Theorem 2.4.3 on AFi, one can show that σ(AFi) = σ(Afi)∪σ(ALi). Note that by Assumption 2.3.8,

Li can always be chosen such that ALi is Hurwitz for all i∈N . In conjunction with Remark 2.4.4, this shows

that under Assumptions 2.3.4-2.3.6 and Assumption 2.3.8, it is always possible to find K1i, K2i, and Li such

that AFi is Hurwitz for all i ∈N .

Let gFi(s),CFi(sI−AFi)
−1BFi. For the dynamic output feedback case, we now state the following

theorem.

Theorem 2.4.5 Let Assumption 2.3.3 hold and AFi be Hurwitz for all i ∈N . If

‖gFi‖∞ ρ(FA)< 1, ∀i ∈N , (2.54)

then the resulting Aη is Hurwitz.

Proof. It follows from Section 2.4.1 by comparing (2.52) and (2.53) with (2.32) and (2.33). �

28



www.manaraa.com

2.5 Illustrative Numerical Examples

To illustrate some results from the previous section, we provide two numerical examples with

different exosystems. In particular, the first (respectively, second) example presents the distributed dynamic

state (respectively, output) feedback control law. For both examples, we consider five agents with the

following system, input, output, and direct feedthrough matrices

Ai =

−1 1

0.2 0

 , Bi =

1

2

 , Ci =

[
1 0

]
, Di = 0.1, i = 1,4,5,

Ai =


0 1 0

0 2 1

0 0 0

 , Bi =


0 0

1 0

0 1

 , Ci =

[
1 0 0.4

]
, Di = 0, i = 2,3,

and the augmented graph Ḡ shown in Figure 2.1. With this setup, each agent satisfies Assumptions 2.3.4

and 2.3.8. It is also clear from Figure 2.1 that Assumption 2.3.3 holds. In the simulations, we set each

nonzero ai j to 1 and ki = 1, i = 1,2. Moreover, initial conditions for the agents are given by x10 = [1, 0.6]T,

x20 = [−0.5, 0, −0.2]T, x30 = [−0.2, −0.3, 0]T, x40 = [0.6, 0]T, x50 = [0, 0.5]T and the controller states of

all agents are initialized at zero.

Figure 2.1: Augmented directed graph Ḡ.

2.5.1 Example 1

In this example, the disturbance δ (t) and the trajectory of the leader r0(t) satisfy the following

dynamics
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δ̇ (t) =


0 0.01 0

0 0 0

0 0 −0.05

δ (t)+


0

0

0.05

 , δ (0) =


0

−0.2

0

 , t ≥ 0,

ṙ0(t) = −r3
0(t)+u0(t), r0(0) = 0, t ≥ 0,

respectively, where

u0(t) =


0.1t, 0≤ t < 100,

0.1t−2sin(0.1t)e−0.01(t−100), 100≤ t < 200,

14+ sin(0.05(t−200)), t ≥ 200.

By the solution of the disturbance dynamics with the given initial condition, δ̇ (t) is bounded. Since u0(t)

is piecewise continuous and bounded, r0(t) is bounded by Example 4.25 in [55]; hence, ṙ0(t) is piecewise

continuous and bounded. Clearly, ω̇(t) is piecewise continuous and bounded. Furthermore, the exosystem

affects the state of each agent and its tracking error through matrices

Eδ1 =

0 1 0

0 0 0

 Eδ4 =

0.1 0 0

0 0 −0.1

 , Eδ5 =

 0 0 0

−0.1 −0.2 0

 ,

Eδ2 =


0 0 1

0 0 0

0 0 0.5

 , Eδ3 =


0 −0.5 0

0 0 −1

0 0.4 0

 , Rr = 1.

Suppose the piecewise continuity and boundedness of ω̇(t) are the only information that we know

about the exosystem. As it is suggested in the part a) of Remark 2.4.2, we then let A0 = 0 and (G1i,G2i) =

(0,1) for all i ∈ N . Thus, Assumptions 2.3.1, 2.3.2, 2.3.5, and 2.3.6 hold. With the following controller

parameters

K1i = −
[

1.1960 0.9611

]
, K2i =−1.4142, i = 1,4,5,

K1i = −

4.2328 5.3904 1.4038

1.2604 1.4038 1.7115

 , K2i =−

1.2788

1.3655

 , i = 2,3,
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Afi is Hurwitz for all i ∈ N and the condition given by (2.36) is satisfied. Thus, Ag is Hurwitz by Theorem

2.4.2. As Theorem 2.4.1 promises, ultimately bounded tracking error is observed in Figure 2.2.
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Figure 2.2: Output responses of the agents in Example 1.

2.5.2 Example 2

The disturbance and the trajectory of the leader satisfy

δ̇ (t) = e−0.1t , δ (0) = 1, t ≥ 0,

ṙ0(t) =

 0 0.5

−0.5 0

r0(t)+

te−tsin(t)

2e−t

 , r0(0) =

−1

1

 , t ≥ 0,

respectively. Moreover, Eδ1 = [1 0]T, Eδ2 = [0 1 0]T, Eδ3 = [−1.5 0 0.3]T, Eδ4 = [0 2]T, Eδ5 = [0.2 −0.2]T,

and Rr = [1 0].

Suppose the unforced parts of the given dynamics are available to a control designer and the forcing

terms are known to be piecewise continuous and convergent to zero. Then, let

A0 =


0 0.5 0

−0.5 0 0

0 0 0

 ,

31



www.manaraa.com

and

G1i =


0 1 0

0 0 1

0 −0.25 0

 , G2i =


0

0

1

 , ∀i ∈N .

Hence, Assumptions 2.3.1, 2.3.5, and 2.3.6 hold. In addition, limt→∞ A0ω(t)− ω̇(t) = 0. Note that As-

sumption 2.3.2 automatically holds since A0ω(t)− ω̇(t) is piecewise continuous and convergent. With the

following controller parameters

K1i = −
[

5.1794 0.7932

]
, Li =

[
17 80.2

]T

,

K2i = −
[

2 5.4458 10.3182

]
, i = 1,4,5,

K1i = −

6.1916 5.7686 1.7835

3.9299 1.7835 2.4282

 , Li =

[
−187 756 600

]T

,

K2i = −

0.4513 0.9173 3.3839

0.8924 2.2285 5.6377

 , i = 2,3,

AFi is Hurwitz for all i ∈ N and the condition given by (2.54) is satisfied. Thus, Aη is Hurwitz by Theorem

2.4.5. Furthermore, it is guaranteed by Theorem 2.4.4 that limt→∞ ei(t) = 0, ∀i ∈ N and this fact is

demonstrated in Figure 2.3.

2.6 Conclusion

In this paper, we studied the cooperative output regulation problem of heterogeneous linear time-

invariant multiagent systems over fixed directed communication graph topologies. Specifically, we intro-

duced a new definition of the linear cooperative output regulation problem (see Definition 2.3.1), which

allows a broad class of functions to be tracked and rejected by a network of agents, and focused on an

internal model based distributed control approach. For the three different distributed control laws (i.e.,

dynamic state feedback, dynamic output feedback with local measurement, and dynamic output feedback),

we investigated the solvability of this problem, which resulted in global and local sufficient conditions (see

Theorems 2.4.1-2.4.5). In addition, the provided two numerical examples illustrated the efficacy of our
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Figure 2.3: Output responses of the agents in Example 2.

contributions. Finally, we reported and addressed a considerable number of gaps in the existing related

literature (see Appendices A and B and Section 2.4.1).
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Chapter 3: Linear Cooperative Output Regulation with Heterogeneity in Synchronization Roles10

This paper introduces a new definition of the linear cooperative output regulation problem in order

to allow the common output synchronization (regulation) together with an additional output synchronization

for a proper subset of all agents. The solvability of this problem with an internal model based distributed

dynamic state feedback control law is first investigated based on a global condition. An agent-wise local

sufficient condition is then presented under standard assumptions. A numerical example is finally provided

to illustrate the considered problem and the proposed approach in this paper.

3.1 Introduction

3.1.1 Related Literature and Motivation

Distributed control of heterogeneous multiagent systems, which are formed by networks of agents

having nonidentical dynamics and dimensions, has emerged as an attractive research direction in the last

decade. In particular, the common output synchronization (regulation) problem of a network of heteroge-

neous (in dynamics and dimension) linear time-invariant systems is investigated for both the cases without

and with a leader (see [1, 22, 34, 42, 43, 51, 64] and the references therein). Although the approaches

in these papers differ from each other, their common denominator is that the common output of all agents

synchronize to a common trajectory. Here, a common output of interest stands for the output variables that

have the same physical meaning for all agents; hence, we shall refer to the common output synchronization as

the primary synchronization role of multiagent systems. Thus, the existing literature addresses the primary

synchronization role of multiagent systems.

From a practical standpoint, however, some output variables of a proper subset of all agents can

share the same physical meaning in addition to a common output of interest. As a consequence, the following

question immediately arises: How do these specific agents achieve output synchronization not only for the

common output but also for the additional output variables they have in common without deteriorating the

10This chapter is previously presented in [63]. Permission is included in Appendix E.
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common output synchronization of the remaining agents? To the best of our knowledge, this question has

not been raised or reported in the existing heterogeneous multiagent systems literature. More importantly,

it yields multiple secondary synchronization roles of multiagent systems and related fundamental research

problems to be studied.

To elucidate one possible problem, consider, for example, a network of heterogeneous dynamical

systems which consists of a leader and two different groups of follower agents; see the graph Ḡ in Figure 3.1.

Specifically, the circle labeled with 0 denotes the leader, the circles labeled with 1,2,4, and 6 denote the first

group of follower agents, and the circles labeled with 3 and 5 denote the second group of follower agents.

Outputs of (follower) agents in the first (two dimensional) and the second (one dimensional) group are given

by [ya(t),yb(t)]T ∈ R2 and ya(t) ∈ R, respectively. If the trajectory of the leader is given by [ya(t),yb(t)]T,

the primary synchronization role of the multiagent system is the synchronization of ya(t) for all agents to

ya(t) of the leader. Yet, there is a secondary synchronization role of this multiagent system; namely, the

synchronization of yb(t) for the agents in the first group to yb(t) of the leader.

0

5

6

0

1

6

4

2

3

1

2

4

Figure 3.1: The graphs given above and below are respectively denoted by Ḡ and ḠS . In these graphs, the
circles denote the leader or the follower agents, and the arrows denote the directed edges corresponding to
the physical coupling or the flow of information.

For this problem, one potential remedy is to synchronize [ya(t),yb(t)]T of the agents in the first

group with [ya(t),yb(t)]T of the leader according to the graph ḠS in Figure 3.1 and then synchronize ya(t) of

the agents in the second group with ya(t) of the agents in the first group by considering only the edges from

1 to 3, 1 to 5, 2 to 3, 4 to 3, and 6 to 3 in the graph Ḡ. By means of this cascade approach, one can utilize the
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existing results in the literature. However, this approach disregards the edges from 3 to 1, 3 to 6, and 5 to 2 in

the graph Ḡ; that is, the physical coupling or the flow of information ya(t) in the graph Ḡ is partially ignored.

When this simplification is not possible, the problem becomes significantly more challenging since it cannot

be divided into two cascade synchronization problems due to the adverse effects of the ignored edges on the

synchronization of [ya(t),yb(t)]T for the agents in the first group with [ya(t),yb(t)]T of the leader.

3.1.2 Contribution and Organization

This paper focuses on heterogeneous linear time-invariant multiagent systems with a leader when

agents have heterogeneity in their synchronization roles. To this end, a new definition of the linear coopera-

tive output regulation problem is introduced in order to allow not only the primary output regulation but also

a secondary output regulation in distributed control of networks of these nonidentical agents. In particular,

the solvability of this problem with an internal model based distributed dynamic state feedback control law

is first investigated based on a global condition. An agent-wise local sufficient condition is then presented

under standard assumptions that paves the way for independent controller design for each agent.

The organization of the remainder of this paper is as follows. Section 3.2 presents the notation and

the essential mathematical preliminaries. Section 3.3 formulates the considered linear cooperative output

regulation problem in this paper. The solvability of this problem by first considering a global condition and

then presenting an agent-wise local sufficient condition is investigated in Section 3.4. Finally, an illustrative

numerical example is provided in Section 3.5 and concluding remarks are summarized in Section 3.6.

3.2 Mathematical Preliminaries

In this paper, R, Rn, and Rn×m respectively denote the sets of real numbers, n× 1 real column

vectors, and n×m real matrices11; 1n and In respectively denote the n× 1 vector of all ones and the n× n

identity matrix; “,” denotes equality by definition. In addition, we write (·)T for the transpose and ‖ · ‖2

for the induced two norm of a matrix; σ(·) for the spectrum12 and ρ(·) for the spectral radius of a square

matrix; (·)−1 for the inverse of a nonsingular matrix; ⊗ for the Kronecker product; and diag(A1, . . . ,An) for

a block-diagonal matrix with matrix entries A1, . . . ,An on its diagonal. Finally, the space L2 is defined as the

set of all piecewise continuous functions u : [0,∞)→ Rm such that ‖u(t)‖L2 =
(∫

∞

0 ‖u(t)‖2
2dt
)1/2

< ∞ [55].

11This paper defines all real matrices over the field of complex numbers.
12We follow Definition 4.4.4 in [54].
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We now concisely state the graph theoretical notation used throughout this paper, which is based

on [5] and [4]. In particular, consider a fixed (i.e., time-invariant) directed graph G = (V,E), where V ={
v1, . . . ,vN

}
is a nonempty finite set of N nodes and E ⊂V×V is a set of edges. Each node in V corresponds

to a follower agent. There is an edge rooted at node v j and ended at vi (i.e., (v j,vi) ∈ E) if and only if vi

receives information from v j. A = [ai j] ∈ RN×N denotes the adjacency matrix, which describes the graph

structure; that is, ai j > 0⇔ (v j,vi) ∈ E and ai j = 0 otherwise. Repeated edges and self loops are not

allowed; that is, aii = 0, ∀i ∈ N with N =
{

1, . . . ,N
}

. The set of neighbors of node vi is denoted as Ni ={
j ∈V|(v j,vi)∈ E

}
. The in-degree matrix is defined byD= diag(d1, . . . ,dN) with di =∑ j∈Ni ai j. A directed

path from node vi to node v j is a sequence of successive edges in the form
{
(vi,vp),(vp,vq), . . . ,(vr,v j)

}
. A

directed graph is said to have a spanning tree if there is a root node such that it has directed paths to all other

nodes in the graph. A fixed augmented directed graph is defined as Ḡ = (V̄, Ē), where V̄ =
{

v0,v1, . . . ,vN
}

is the set of N+1 nodes, including leader node v0 and all nodes in V , and Ē = E ∪E ′ is the set of edges with

E ′ consisting of some edges in the form of (v0,vi), i ∈N .

In addition, we consider a proper subset of nodes S ⊂V such that S includes all follower agents that

have the secondary synchronization role. Without loss of generality, the following index set is considered

for S: NS =
{

1, . . . ,N′
}

. S induces a subgraph with respect to G and this induced subgraph is given

by GS = (S,ES), where ES =
{
(v j,vi) ∈ E | v j,vi ∈ S

}
. Following the foregoing paragraph, we define

adjacency and in-degree matrices for GS : AS = [asi j]∈RN′×N′ denotes the corresponding adjacency matrix,

where asi j > 0⇔ (v j,vi) ∈ ES , asi j = 0 otherwise, and DS = diag(ds1, . . . ,dsN′) with dsi = ∑ j∈Ni∩NS asi j

denotes the corresponding in-degree matrix. Finally, S̄ =
{

v0,v1, . . . ,vN′
}

including leader node v0 and

all nodes in V that have the secondary synchronization role induces a subgraph with respect to Ḡ and this

induced subgraph is given by ḠS = (S̄, ĒS), where ĒS =
{
(v j,vi) ∈ Ē | v j,vi ∈ S̄

}
.

Finally, the concept of the internal model, which is given in Definition 1.22 and Remark 1.24 of

[25], is tailored for the purpose of this paper.

Definition 3.2.1 Given any square matrix A0, a pair of matrices (G1,G2) is said to incorporate a p-copy

internal model of the matrix A0 if G1 and G2 are given by

G1 = diag(β1, . . . ,βp), G2 = diag(σ1, . . . ,σp), (3.1)

where for l = 1, . . . , p, βl ∈ Rhl×hl and σl ∈ Rhl satisfy the following conditions:
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i) The pair (βl,σl) is controllable.

ii) The minimal polynomial of A0 is equal to the characteristic polynomial of βl .

3.3 Problem Formulation

3.3.1 Heterogeneous Multiagent Systems Setup

We focus on a system of N (follower) agents with heterogeneous linear time-invariant dynamics

subject to disturbances over a fixed directed graph topology G, where the dynamics of agent i ∈ N is given

by

ẋi(t) = Aixi(t)+Biui(t)+δi(t), xi(0) = xi0, t ≥ 0, (3.2)

yi(t) = Cixi(t)+Diui(t), (3.3)

with state xi(t) ∈ Rni , input ui(t) ∈ Rmi , disturbance δi(t) ∈ Rni , and primary output yi(t) ∈ Rp. In addition

to the primary output given by (3.3), every agent i ∈NS has the following output equation

ysi(t) = Csixi(t)+Dsiui(t), (3.4)

where ysi(t) ∈ Rps denotes the secondary output.

Consider now the exosystem given by

ω̇(t) = A0ω(t), ω(0) = ω0, t ≥ 0, (3.5)

y0(t) = Rω(t), (3.6)

ys0(t) = Rsω(t), (3.7)

δi(t) = Eiω(t), (3.8)

that generates trajectories of the leader to be tracked and disturbances to be rejected by agents, where

ω(t) ∈ Rq is the exosystem state and y0(t) ∈ Rp (respectively, ys0(t) ∈ Rps) is the trajectory of the leader

for the primary (respectively, secondary) synchronization role. It should be noted that this secondary

synchronization role can be the prioritized (i.e., selected) one among multiple secondary roles.
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Next, consider the primary tracking error and the secondary tracking error respectively given by

ei(t) , yi(t)− y0(t), ∀i ∈N , (3.9)

esi(t) , ysi(t)− ys0(t), ∀i ∈NS . (3.10)

As a consequence, we can write the dynamics of each agent and their corresponding tracking errors as

ẋi(t)=Aixi(t)+Biui(t)+Eiω(t), xi(0) = xi0, t ≥ 0, (3.11)

ei(t)=Cixi(t)+Diui(t)−Rω(t), (3.12)

esi(t)=Csixi(t)+Dsiui(t)−Rsω(t). (3.13)

If node vi observes the leader node v0, then there exists an edge (v0,vi) with weighting gain ki > 0,

otherwise ki = 0. Thus, every agent that observes the leader has access to the primary tracking error ei(t). If,

in addition, it belongs to NS , then it has access to the secondary tracking error esi(t). Moreover, this paper

assumes that each agent i ∈N has access to its own state xi(t) and the primary relative output error; that is,

yi(t)− y j(t) for all j ∈ Ni. Each agent i ∈ NS also has access to the secondary relative output error; that is,

ysi(t)−ys j(t) for all j ∈ Ni∩NS . The primary local virtual tracking error for each agent i ∈N is defined as

evi(t) ,
1

di + ki

(
∑
j∈Ni

ai j
(
yi(t)− y j(t)

)
+ ki

(
yi(t)− y0(t)

))
. (3.14)

In addition, the secondary local virtual tracking error for each agent i ∈NS can be defined as

esvi(t) ,
1

dsi + ki

(
∑

j∈Ni∩NS

asi j
(
ysi(t)− ys j(t)

)
+ ki

(
ysi(t)− ys0(t)

))
. (3.15)

Finally, we define the distributed dynamic state feedback control law based on the available infor-

mation to each agent as

ui(t) =

{K1ixi(t)+K2izi(t)+K3izsi(t), ∀i ∈NS , (3.16a)

K1ixi(t)+K2izi(t), ∀i ∈N \NS , (3.16b)
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żi(t) = G1izi(t)+G2ievi(t), zi(0) = zi0, t ≥ 0, ∀i ∈N , (3.17)

żsi(t) = G̃1izsi(t)+ G̃2iesvi(t), zsi(0) = zsi0, t ≥ 0, ∀i ∈NS , (3.18)

where zi(t) ∈ Rnzi and zsi(t) ∈ Rnzsi are the controller states and the septuple (K1i,K2i,K3i,G1i,G2i, G̃1i, G̃2i)

is specified in Section 3.4.

3.3.2 Considered Cooperative Output Regulation Problem

Generalizing the definition of the linear cooperative output regulation problem in [34], the problem

considered in this paper is now defined as follows.

Definition 3.3.1 Given the system in (3.5), (3.11)-(3.13), and the fixed augmented directed graphs Ḡ and

ḠS , find a distributed control law of the form (3.16a)-(3.18) such that:

i) The resulting closed-loop system matrix is Hurwitz.

ii) For all ω0; xi0, zi0, i ∈N ; and zsi0, i ∈NS; limt→∞ ei(t) = 0, ∀i ∈N and limt→∞ esi(t) = 0, ∀i ∈NS .

To solve the problem defined above, this paper makes the following assumptions.

Assumption 3.3.1 A0 ∈ Rq×q has no eigenvalues with negative real parts.

Assumption 3.3.2 The fixed augmented directed graph Ḡ has a spanning tree with the root node being the

leader node.

Assumption 3.3.3 The fixed augmented directed graph ḠS has a spanning tree with the root node being the

leader node.

Assumption 3.3.4 The pair (Ai,Bi) is stabilizable for all i ∈N .

Assumption 3.3.5 For all λ ∈ σ(A0),

rank


Ai−λ Ini Bi

Ci Di

Csi Dsi

= ni + p+ ps, ∀i ∈NS . (3.19)
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Assumption 3.3.6 For all λ ∈ σ(A0),

rank

Ai−λ Ini Bi

Ci Di

= ni + p, ∀i ∈N \NS . (3.20)

Assumption 3.3.7 The pair (G1i,G2i) incorporates a p-copy internal model of A0 for all i ∈N .

Assumption 3.3.8 The pair (G̃1i, G̃2i) incorporates a ps-copy internal model of A0 for all i ∈NS .

3.4 Solvability of the Problem

In this section, we investigate the solvability of the problem given in Definition 3.3.1. Specifically,

our approach is twofold. First, the property i) of Definition 3.3.1 is assumed and it is shown, under mild

conditions, that this implies the property ii) of Definition 3.3.1. Second, an agent-wise local sufficient

condition (i.e., distributed criterion) is provided for the property i) of Definition 3.3.1 (i.e., the stability of

the closed-loop system matrix) under standard assumptions.

We begin with some definitions that are used in this section to express the closed-loop systems in

their equivalent compact forms. Let Φ, diag(Φ1, . . . ,ΦN), Φ=A,B,C,D,E; Ψl , diag(Ψl1, . . . ,ΨlN), Ψ=

K,G, l = 1,2; G̃l , diag(G̃l1, . . . , G̃lN′), l = 1,2; K3 , diag(K31, . . . ,K3N′); φ̄ , diag(φ1, . . . ,φN′), φ =

B,D; and ψ̄s , diag(ψs1, . . . ,ψsN′), ψ = C,D. Furthermore, let x(t) , [xT
1 (t), . . . ,x

T
N(t)]

T ∈ Rn̄, z(t) ,

[zT
1 (t), . . . ,z

T
N(t)]

T ∈Rn̄z , zs(t), [zT
s1(t), . . . ,z

T
sN′(t)]

T ∈Rn̄zs , where n̄ = ∑
N
i=1 ni, n̄z = ∑

N
i=1 nzi , n̄zs = ∑

N′
i=1 nzsi ;

e(t) , [eT
1 (t), . . . ,e

T
N(t)]

T ∈ RN p, ev(t) , [eT
v1(t), . . . ,e

T
vN(t)]

T ∈ RN p, es(t) , [eT
s1(t), . . . ,e

T
sN′(t)]

T ∈ RN′ps ,

esv(t) , [eT
sv1(t), . . . ,e

T
svN′(t)]

T ∈ RN′ps . Finally, let ωa(t) , 1N ⊗ω(t) ∈ RNq, A0a , IN ⊗A0, Ra , IN ⊗R,

and R̄sa , IN′⊗Rs.

Observing yi(t)−y j(t)= ei(t)−e j(t) and ysi(t)−ys j(t)= esi(t)−es j(t), and recalling di =∑ j∈Ni ai j,

i ∈N and dsi = ∑ j∈Ni∩NS asi j, i ∈NS , the expressions given by (3.14) and (3.15) can be rewritten as

evi(t) = ei(t)−
1

di + ki
∑
j∈Ni

ai je j(t), (3.21)

esvi(t) = esi(t)−
1

dsi + ki
∑

j∈Ni∩NS

asi jes j(t), (3.22)

respectively. Let F , diag
(

1
d1+k1

, . . . , 1
dN+kN

)
, FS , diag

(
1

ds1+k1
, . . . , 1

dsN′+kN′

)
, W , (IN −FA)⊗ Ip, and

WS , (IN′ −FSAS)⊗ Ips . Here, it should be noted that di + ki > 0, ∀i ∈ N and dsi + ki > 0, ∀i ∈ NS by
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Assumption 3.3.2 and Assumption 3.3.3, respectively; hence, F and FS are well-defined. From (3.21) and

(3.22), one can respectively write

ev(t) = We(t), (3.23)

esv(t) = WSes(t). (3.24)

Next, inserting (3.16a) and (3.16b) into (3.11) and (3.12), (3.16a) into (3.13), and using the above

definitions, one can compactly write (3.11), (3.17), (3.18), (3.12), and (3.13) as

ẋ(t) = (A+BK1)x(t)+BK2z(t)+ B̃K3zs(t)+Eωa(t), x(0) = x0, t ≥ 0, (3.25)

ż(t) = G1z(t)+G2ev(t), z(0) = z0, t ≥ 0, (3.26)

żs(t) = G̃1zs(t)+ G̃2esv(t), zs(0) = zs0, t ≥ 0, (3.27)

e(t) = (C+DK1)x(t)+DK2z(t)+ D̃K3zs(t)−Raωa(t), (3.28)

es(t) = (Cs +DsK1)x(t)+DsK2z(t)+ D̄sK3zs(t)−Rsaωa(t), (3.29)

where B̃ = [B̄T 0]T, D̃ = [D̄T 0]T, Cs = [C̄s 0], Ds = [D̄s 0], and Rsa = [R̄sa 0]. Now, insert (3.28) into (3.23)

(respectively, (3.29) into (3.24)) and replace the obtained expression with the one in (3.26) (respectively,

(3.27)). Define xg(t) , [xT(t),zT(t),zT
s (t)]

T ∈ Rn̄+n̄z+n̄zs and eg , [eT(t),eT
s (t)]

T ∈ RN p+N′ps . The closed-

loop system given by (3.11)-(3.18) then becomes

ẋg(t) = Agxg(t)+Bgωa(t), xg(0) = xg0, t ≥ 0, (3.30)

eg(t) = Cgxg(t)+Dgωa(t), (3.31)

where

Ag =


A+BK1 BK2 B̃K3

G2W(C+DK1) G1+G2WDK2 G2WD̃K3

G̃2WS(Cs+DsK1) G̃2WSDsK2 G̃1+G̃2WSD̄sK3

, Bg =


E

−G2WRa

−G̃2WSRsa

,

Cg =

 C+DK1 DK2 D̃K3

Cs+DsK1 DsK2 D̄sK3

, Dg

−Ra

−Rsa

 .
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The next lemma plays a crucial role on the solvability of the problem, which is presented in Theorem

3.4.1 by assuming the property i) of Definition 3.3.1. Due to the page limitation, the proof of the next lemma

is omitted.

Lemma 3.4.1 Let Assumptions 3.3.1-3.3.3, 3.3.7, and 3.3.8 hold. If Ag is Hurwitz, then the matrix equations

XgA0a = AgXg +Bg, (3.32)

0 = CgXg +Dg, (3.33)

have a unique solution Xg.

Theorem 3.4.1 Let Assumptions 3.3.1-3.3.3, 3.3.7, and 3.3.8 hold. If Ag is Hurwitz, then the distributed

dynamic state feedback control given by (3.16a)-(3.18) solves the problem in Definition 3.3.1.

Proof. Under the given conditions, (3.32) and (3.33) have a unique solution Xg by Lemma 3.4.1. It

now can be derived from Lemma 1.4 in [25] that for all ω0; xi0, zi0, i∈N ; and zsi0, i∈NS ; limt→∞ eg(t) = 0.

�

Next, we focus on deriving an agent-wise local sufficient condition that assures the property i) of

Definition 3.3.1 (i.e., Ag is Hurwitz) under some standard assumptions. For now, let ξi(t) , [xT
i (t), zT

i (t),

zT
si(t)]

T ∈Rni+nzi+nzsi , ∀i ∈NS ; ξi(t), [xT
i (t), zT

i (t)]
T ∈Rni+nzi , ∀i ∈N \NS ; µi(t), 1

di+ki
∑ j∈Ni ai j(e j(t)+

w j(t)), ∀i∈N ; and µsi(t), 1
dsi+ki

∑ j∈Ni∩NS asi j(es j(t)+ws j(t)), ∀i∈NS . Here, w j(t)∈Rp and ws j(t)∈Rps

are disturbances such that each agent i ∈ N can have access to the disturbed primary relative output error

yi(t)− y j(t)−w j(t) for all j ∈ Ni instead of yi(t)− y j(t) and each agent i ∈ NS can have access to the

disturbed secondary relative output error ysi(t)− ys j(t)−ws j(t) for all j ∈ Ni∩NS instead of ysi(t)− ys j(t).

Taking into account the disturbances w j(t) and ws j(t), the primary and the secondary local virtual tracking

errors in (3.14) and (3.15) are respectively written as

evi(t) = ei(t)−µi(t), (3.34)

esvi(t) = esi(t)−µsi(t). (3.35)
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We now define the matrices for agent i ∈NS as

Afi ,


Ai+BiK1i BiK2i BiK3i

G2i(Ci+DiK1i) G1i+G2iDiK2i G2iDiK3i

G̃2i(Csi+DsiK1i) G̃2iDsiK2i G̃1i+G̃2iDsiK3i

,

B̄fi ,


0

−G2i

0

, B̄fsi ,


0

0

−G̃2i

, Bfi ,

[
B̄fi B̄fsi

]
,

C̄fi ,

[
Ci+DiK1i DiK2i DiK3i

]
, C̄fsi ,

[
Csi+DsiK1i DsiK2i DsiK3i

]
,

and the matrices for agent i ∈N \NS as

Afi ,

 Ai+BiK1i BiK2i

G2i(Ci+DiK1i) G1i+G2iDiK2i

, Bfi ,

 0

−G2i

,
C̄fi ,

[
Ci+DiK1i DiK2i

]
.

At this point, consider (3.11), (3.17), (3.18), (3.12), (3.13), (3.34), and (3.35) when ω(t)≡ 0. By inserting

(3.16a) and (3.16b) into the considered equations, one can write the dynamics of each agent and its tracking

error(s) respectively as

ξ̇i(t) = Afiξi(t)+Bfiµ̃i(t), ξi(0) = ξi0, t ≥ 0, (3.36)

ei(t) = C̄fiξi(t), (3.37)

esi(t) = C̄fsiξi(t), (3.38)

where µ̃i(t) = [µT
i (t),µ

T
si(t)]

T, ∀i ∈NS , µ̃i(t) = µi(t), ∀i ∈N \NS .

Let, in addition, F1 , diag
(

1
d1+k1

, . . . , 1
dN′+kN′

)
and F2 , diag

(
1

dN′+1+kN′+1
, . . . , 1

dN+kN

)
. Partition

A as A = [AT
1 AT

2 ]
T, where A1 ∈ RN′×N and A2 ∈ R(N−N′)×N . Define the following matrices: Af ,

diag(Af1, . . . ,AfN), B̄f , diag(B̄f1, . . . , B̄fN′), B̄fs , diag(B̄fs1, . . . , B̄fsN′), B̃f , diag(BfN′+1, . . . ,BfN), C̄f ,

diag(C̄f1, . . . ,C̄fN), C̄fs , diag(C̄fs1, . . . ,C̄fsN′), C̃fs , [C̄fs 0], Bf ,

B̄f(F1A1⊗ Ip) B̄fs(FSAS ⊗ Ips)

B̃f(F2A2⊗ Ip) 0

,Cf ,
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C̄f

C̃fs

. Let ξ (t), [ξ T
1 (t), . . . ,ξ

T
N (t)]

T ∈Rn̄+n̄z+n̄zs and w, [wT
1 (t), . . . ,w

T
N(t),w

T
s1(t), . . . ,w

T
sN′(T )]

T ∈RN p+N′ps .

Then, (3.36)-(3.38) can be put into the compact form given by

ξ̇ (t) = Ãfξ (t)+Bfw(t), ξ (0) = ξ0, t ≥ 0, (3.39)

eg(t) = Cfξ (t), (3.40)

where Ãf = Af + BfCf. By construction, it is clear that Ag is similar to Ãf; hence, they have the same

eigenvalues.

By applying a version of the small gain theorem from Theorem 6.2.2.12 in [57], one can derive the

agent-wise local sufficient condition given by (3.43) for L2 stability of the dynamics in (3.39) and (3.40).

To conclude from its input-output stability that Ag is Hurwitz, the stabilizability and the detectability of the

system of interest must be ensured. It is easy to see that if Af is Hurwitz, then the pair (Ãf,Bf) is stabilizable

and the pair (Ãf,Cf) is detectable. Therefore, the stabilizability and the detectability of the dynamics given

by (3.39) and (3.40) are guaranteed if Afi is Hurwitz for all i ∈N .

Remark 3.4.1 For agent i ∈ NS , let Ḡli , diag(Gli, G̃li), l = 1,2; K̄i , [K1i K2i K3i]; and ψ̄i = [ψT
i ψT

si ]
T,

ψ =C,D. Then, Afi = Āi + B̄iK̄i, where

Āi =

 Ai 0

Ḡ2iC̄i Ḡ1i

 , B̄i =

 Bi

Ḡ2iD̄i

 .
Note that the pair (Ḡ1i, Ḡ2i) incorporates a (p+ ps)-copy internal model of A0 under Assumptions 3.3.7 and

3.3.8. By Lemma 1.26 in [25], Assumptions 3.3.4, 3.3.5, 3.3.7, and 3.3.8 ensure the stabilizability of the

pair (Āi, B̄i) for all i ∈NS . Thus, K̄i can always be chosen such that Afi is Hurwitz for all i ∈NS . Similarly,

for agent i ∈N \NS , let K̄i , [K1i K2i]. Then, Afi = Āi + B̄iK̄i, where

Āi =

 Ai 0

G2iCi G1i

 , B̄i =

 Bi

G2iDi

 .
Assumptions 3.3.4, 3.3.6, and 3.3.7 guarantee the stabilizability of the pair (Āi, B̄i) for all i ∈ N \NS by

Lemma 1.26 in [25]. Hence, it is always possible to find K̄i such that Afi is Hurwitz for all i ∈N \NS .

45



www.manaraa.com

Let gi(s) = C̄fi(sI−Afi)
−1Bfi, ∀i ∈ N and gsi(s) = C̄fsi(sI−Afi)

−1Bfi, ∀i ∈ NS . If we make Afi

Hurwitz for all i ∈ N , we can then conclude from Corollary 5.2 in [55] that for all i ∈ N , the system given

by (3.36) and (3.37) is L2 stable with finite gain; and for all i ∈ NS , so is the system given by (3.36) and

(3.38). It follows from Theorem 5.4 in [55] that the corresponding L2 gains of the systems are

γi = sup
ω∈R
‖gi( jω)‖2 < ∞, ∀i ∈N , (3.41)

γsi = sup
ω∈R
‖gsi( jω)‖2 < ∞, ∀i ∈NS . (3.42)

Let Γ1 , diag(γ1, . . . ,γN′), Γ2 , diag(γN′+1, . . . ,γN), Γ3 , diag(γs1, . . . ,γsN′), Γ, diag(Γ1,Γ2,Γ3).

The next theorem presents an agent-wise local sufficient condition for the problem introduced in

Definition 3.3.1. Due to the page limitation, the proof of Theorem 3.4.2 is omitted.

Theorem 3.4.2 Let Assumptions 2 and 3 hold, and Afi be Hurwitz for all i ∈N . If

ρ(Γ)ρ(Q)< 1, (3.43)

then Ag is Hurwitz, where

Q=


F1A1 FSAS

F2A2 0

F1A1 FSAS

.

Remark 3.4.2 The inequality given by (3.43) is satisfied if and only if γiρ(Q)< 1, ∀i∈N and γsiρ(Q)< 1,

∀i ∈ NS . Hence, it paves the way for independent controller design for each agent. In addition, if there

were no secondary synchronization roles, the third row and the second column of Q would not be required

and the condition would become γiρ(FA)< 1, ∀i ∈N . This special case is consistent with the result in [1]

and [51].
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3.5 Illustrative Numerical Example

To illustrate the efficacy of our contributions documented in the previous section, consider six agents

with

Ai =



0 1 0 −0.5

0 2 1 0

0 0 0 1

0.2 0 0 0


, Bi =



0 1

2 0

0 −1

3 1


,

Ci =

[
1 0 0 0

]
, Di =

[
0 1

]
,

Csi =

[
0 0 1 0

]
, Dsi = 0, i = 1,2,4,6,

Ai =

0.1 1

0.5 0

, Bi =

−1

1

 ,
Ci =

[
1 0

]
, Di =−0.5, i = 3,5.

In addition, consider an exosystem with

A0 =



0 1 0 0

0 0 0 0

0 0 0 0.5

0 0 −0.5 0


,

R =

[
1 0 0 0

]
, Rs =

[
0 0 1 0

]
,

E1 =



0.5 0 0 1

0 −0.8 0.1 0

0 0 0.4 −1

−0.2 0 0 0


, E2 =



0 1 −0.5 0

0 0 0 2

−1 −0.3 0 0

2 1 0 −1


,
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E4 =



1 1 0 0

0 0 0 0

−2 0 1 −1

0 0 0 1


, E6 =



0 0 0 2

3 2 1 0

0 0.5 0 0

0 1 0 0


,

E3 =

 0 −2 0 1

0.4 0 0.2 0

, E5 =

 1 −1 1 −1

−1 1 −1 1

,
and the augmented directed graphs Ḡ and ḠS shown in Figure 3.1. In the simulations, we set each nonzero

ai j and asi j to 1 and ki = 100, i = 1,2. Moreover, initial conditions for the exosystem and the agents are

given by ω0 = [0, 0.2, 1, −1]T, x10 = [1, 0.6, 0, 0]T, x20 = [−0.5, 0, −0.2, 0]T, x30 = [−0.1, 0]T, x40 =

[0, 0, 0.2, 0.1]T, x50 = [0, 0.1]T, x60 = [−0.5, 0, 0, −0.1]T, and the controller states of all agents are

initialized at zero. It should be noted that NS = {1,2,4,6}13.

With this setup, Assumptions 3.3.1-3.3.6 hold. In addition, with the following matrices

G1i =



0 1 0 0

0 0 1 0

0 0 0 1

0 0 −0.25 0


, G2i =



0

0

0

1


, ∀i ∈N ,

and G̃1i =G1i, G̃2i =G2i, ∀i∈NS , Assumptions 3.3.7 and 3.3.8 are also satisfied. Finally, with the following

controller parameters

K1i = −

0.2671 21.0962 −4.7667 −9.9519

3.7818 −7.8813 2.3770 4.8829

,
K2i = −

0.3132 1.4882 3.2623 3.8043

0.9497 4.5627 9.5427 12.6600

,
K3i = −

−0.0300 −0.5954 0.2250 −5.5793

0.0099 0.1969 −0.1051 1.9180

,∀i∈NS,

13This index set does not violate the results in the paper since any generality is not lost by re-enumerating the agents (see
Section 3.2).

48



www.manaraa.com

K1i = −
[

163.8941 199.5744

]
,

K2i = −
[

0.0316 0.7889 −0.4712 5.4435

]
, ∀i∈N\NS ,

Afi is Hurwitz for all i ∈ N and the condition given by (3.43) is satisfied. Thus, Ag is Hurwitz by Theorem

3.4.2.

As is theoretically expected from Theorem 3.4.1, both the primary tracking error for all i ∈ N and

the secondary tracking error for all i ∈ NS converge to zero. This fact is numerically illustrated in Figure

3.2.

0 50 100 150

0

10

20

y
i(
t)

y0(t)
y1(t)
y2(t)
y3(t)
y4(t)
y5(t)
y6(t)

0 50 100 150

t (sec)

-4

-2

0

2

y
si
(t
) ys0(t)

ys1(t)
ys2(t)
ys4(t)
ys6(t)

Figure 3.2: The primary output responses of the agents in N and the secondary output responses of the
agents in NS .

3.6 Conclusion

For contributing to the studies in multiagent systems, this paper introduced and addressed the

heterogeneity in synchronization roles problem for networks of nonidentical linear time-invariant agents.

Specifically, a new definition of the linear cooperative output regulation problem (Definition 3.3.1) was

given to allow both the primary output regulation and a secondary output regulation in distributed control of
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multiagent systems. For an internal model based distributed state feedback control law, we first investigated

the solvability of this problem based on a global condition (Theorem 3.4.1). We then provided an agent-

wise local sufficient condition (Theorem 3.4.2) that paves the way for independent controller design for each

agent. Future research will extend these results to multiple secondary synchronization roles of multiagent

systems.
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Chapter 4: Distributed Control of Linear Multiagent Systems with Global and Local Objectives14

In this paper, we consider distributed control problems for high-order linear time-invariant mul-

tiagent systems with not only global but also local objectives over fixed directed communication graph

topologies. The former is either leaderless synchronization or synchronization to a leader. Local objectives

for a subset of agents, on the other hand, are tasks determined by agent-specific dynamical systems around

the global objective. First, we construct reference models for all agents via two existing synchronization

results, introduce two classes of distributed controllers, and define the considered problems. We then

solve them by utilizing the converging-input converging-state property for a class of linear systems and

the feedforward design methodology from the linear output regulation theory. Finally, numerical examples

are presented to demonstrate the problems and the theoretical results.

4.1 Introduction

With the system-theoretic advancements in distributed control of multiagent systems over the last

two decades, groups of agents are now able to utilize local information exchange for achieving a broad class

of global objectives that range from synchronization (i.e., consensus) to formation (e.g., see [2–5, 46] and

references therein). In particular, state synchronization in networks of identical linear systems on directed

graphs has been well studied: Single-integrator and double-integrator agent dynamics are considered in

[9–11] and [12, 13], respectively. For high-order linear time-invariant dynamical systems, the authors of

[6, 14–18] have proposed different distributed controllers and explored conditions to guarantee leaderless

synchronization. Extensions to leader-following consensus (i.e., synchronization to a leader) problems have

been further investigated in [17, 19, 20].

Despite all the developments in the multiagent system literature, the following fundamental question

arises: How do some of the agents forming the multiagent system perform their own local objectives, which

are defined with respect to the global objective of the multiagent system, without deteriorating the overall

14This chapter has been submitted to a journal for possible publication.
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multiagent system’s global objective? This question gives us another problem to address. To elucidate the

problem, consider a multiagent system over a fixed directed communication graph. Specifically, assume

that this system has been performing synchronization as a global objective and an operator wants to interact

with a subset of the agents, for example, to drive them to an environment for data collection or battery

charging purposes, or to change the frequency of the synchronization mapping for some state variables of

them. When the operator injects commands to these agents for the mentioned local objectives, they are

supposed to perform them and the remaining agents are expected to preserve the synchronization as if none

of the agents had local objectives. After the removal of the external commands, agents that were performing

their local objectives are also required to obey the synchronization.

The key points revealed by the specifications of the above scenario should be taken into account

when the problem is defined and distributed controllers are proposed to tackle it. In fact, the question given

in the second paragraph has been recently raised in [49] by the authors and system-theoretically addressed

in [49] by providing five different distributed controllers (i.e., protocols) with comparable advantages (see

Tables I and II in [49]) for single-integrator agent dynamics when the global objective is leaderless con-

sensus. In [50], these controllers are slightly modified to achieve the leader-follower consensus as a global

objective. Furthermore, several experiments are conducted on a team of ground mobile robots with these

protocols. This experimental evaluation has shown that the third and fifth distributed controllers in [49] and

[50] outperform the other three for both leaderless and leader-follower consensus.

This paper focuses on high-order linear time-invariant multiagent systems with both global and local

objectives, where the former is either leaderless synchronization or synchronization to a leader and the latter

is determined by agent-specific dynamics around the synchronization mapping of the former. Based on the

existing synchronization results of [6] and [19], we construct (distributed) reference model, which achieves

the global objective, for each agent. Inspired by the harmony of global and local objectives considered in

[49] together with the third and fifth protocols of [49] and [50], we introduce two classes of distributed

controllers and define the problems to have not only global but also local objectives for networks of linear

time-invariant dynamical systems. We then propose design approaches, which utilize the feedforward design

methodology from the linear output regulation theory to assign some agents local tasks, for distributed

controllers to solve the problems. Finally, numerical examples are provided to illustrate our contributions.

The rest of this paper is organized as follows. In Section 4.2, we provide the notation and pre-

liminary results. In Section 4.3, we system-theoretically state the problems. Section 4.4 contains the main
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results. Numerical examples are given in Section 4.5 and our concluding remarks are summarized in Section

4.6.

4.2 Preliminaries

4.2.1 Notation and Graph Theoretic Preliminaries

For a set S, the membership of the element s in S is denoted by s ∈ S. Let S1 and S2 be sets. If S1 is

a subset of S2, we denote this by S1 ⊂ S2. The union and the intersection of S1 and S2 are denoted by S1∪S2

and S1 ∩ S2, respectively. The complement of S1 in S2 is denoted by S2 \ S1 and the empty set is denoted

by /0. Let R, R≥0, and R>0 respectively denote the sets of all real numbers, nonnegative real numbers, and

positive real numbers. Let C be the set of all complex numbers. For λ ∈ C, let Re(λ ) denote the real part

of λ . Let Rn and Rn×m respectively denote the sets of all n×1 real column vectors and n×m real matrices.

Let 1n and In respectively denote the n×1 vector of all ones and the n×n identity matrix; and “,” denote

equality by definition. We also write (·)T for the transpose of a matrix and ‖ · ‖2 for the Euclidean norm of

a vector, and ⊗ for the Kronecker product. Finally, diag(A1, . . . ,An) is a block-diagonal matrix with matrix

entries A1, . . . ,An on its diagonal.

In this paper, we consider a fixed (i.e., time-invariant) directed graph G = (V,E), where V ={
v1, . . . ,vN

}
is a nonempty finite set of N nodes and E ⊂V×V is a set of edges. Each node in V corresponds

to an agent. There is an edge rooted at node v j and ended at vi, (i.e., (v j,vi) ∈ E), if and only if vi receives

information from v j. In addition, A = [ai j] ∈ RN×N denotes the adjacency matrix of the graph G, where

ai j ∈ R>0 if (v j,vi) ∈ E , ai j = 0 otherwise. Self-loops are not allowed; that is, aii = 0, ∀i ∈ N with

N =
{

1, . . . ,N
}

. The set of neighbors of node vi is denoted as Ni =
{

j | (v j,vi) ∈ E
}

. In-degree and

Laplacian matrices of the graph G are defined as D = diag(d1, . . . ,dN) with di = ∑ j∈Ni ai j and L = D−A,

respectively. Thus, L has zero row sums (i.e., L1N = 0). A directed path from node vi to node v j is

a sequence of successive edges in the form (vi,vp),(vp,vq), . . . ,(vr,v j). A directed graph is said to have

a spanning tree if there is a node such that it has a directed path to every other node in the graph. A

fixed augmented directed graph is defined as Ḡ = (V̄, Ē), where V̄ =
{

v0
}
∪V is the set of N + 1 nodes,

including the leader node v0 and all nodes in V , and Ē = E ∪E ′ is the set of edges with E ′ being a subset of{
(v0,vi) | i ∈N

}
.
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4.2.2 Synchronization of Linear Systems

This subsection briefly overviews the linear quadratic regulator-based synchronization of identical

linear time-invariant dynamical systems over general fixed directed communication graph topologies, where

leaderless synchronization and synchronization to a leader are investigated in [6] and [19], respectively.

Consider N agents with identical linear time-invariant dynamical systems

ẋi(t) = Axi(t)+Bui(t), xi(0) = xi0, t ≥ 0, (4.1)

where xi(t) ∈ Rn is the state and ui(t) ∈ Rm is the input of the agent i.

Assumption 4.2.1 The pair (A,B) is stabilizable.

We state a well-known result of optimal control theory (e.g., see Theorem 3.4-2 of [65] together

with the discussion given after the theorem) in the following lemma.

Lemma 4.2.1 Let Q = QT ∈ Rn×n and R = RT ∈ Rm×m be positive definite matrices. Suppose Assumption

4.2.1 holds. Then, the following algebraic Riccati equation

ATP+PA+Q−PBR−1BTP = 0 (4.2)

has a unique positive definite solution P = PT ∈ Rn×n. Therefore, A−BK is Hurwitz, where K = R−1BTP.

We next restate the Lemma 1 in [6] as follows:

Lemma 4.2.2 Let λ ∈ C and let K , R−1BTP, where P is the positive definite solution to (4.2) under the

assumptions as in Lemma 4.2.1. If Re(λ )≥ 0.515, then A−λBK is Hurwitz.

4.2.2.1 Leaderless Synchronization

It is assumed that each agent has access to the relative state information between itself and its

neighbors; that is, xi(t)− x j(t) for all j ∈ Ni. Then, consider the distributed controllers16 given by

ui(t) = cK ∑
j∈Ni

ai j
(
x j(t)− xi(t)

)
, (4.3)

15Although it is assumed in Lemma 1 of [6] that Re(λ )≥ 1, its proof is still valid when Re(λ )≥ 0.5.
16For every distributed controller considered in this paper, K is a feedback gain and c is a coupling gain as in (4.3).
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with a feedback gain K ∈ Rn×n and a coupling gain c ∈ R>0. By inserting (4.3) into (4.1) and defining

x(t), [xT
1 (t), . . . ,x

T
N(t)]

T ∈ RNn, the dynamics of all agents can be compactly written as

ẋ(t) = (IN⊗A− cL⊗BK)x(t), x(0) = x0, t ≥ 0. (4.4)

Now, we define the leaderless synchronization for the problem setup in [6].

Definition 4.2.1 The systems in (4.1) with the distributed controllers of the form (4.3) are said to be synchro-

nized if for all x0 ∈RNn, there is a continuous mapping x? of R≥0 into Rn such that limt→∞

(
xi(t)−x?(t)

)
= 0

for all i ∈N .

The main result of [6] recalled in Theorem 4.2.1 shows that the feedback gain K obtained via Lemma

4.2.1 guarantees synchronization of the systems in (4.1) for any directed graph satisfying Assumption 4.2.2

provided that the coupling is strong enough, where the coupling gain c is dependent on the graph and it is

determined by Lemma 4.2.2.

Assumption 4.2.2 The fixed directed graph G with at least two nodes has a spanning tree.

Under Assumption 4.2.2, it is known thatL has exactly one zero eigenvalue and its other eigenvalues

have positive real parts (e.g., see Lemma 3.3 in [10]). Let λ2(L) be a nonzero eigenvalue of L closest to the

imaginary axis. Furthermore, let wl ∈ RN satisfy wT
l L= 0 and wT

l 1N = 1.

Theorem 4.2.1 Consider the systems in (4.1). Let K , R−1BTP, where P is the positive definite solution

to (4.2) under the assumptions as in Lemma 4.2.1. Let Assumption 4.2.2 hold. If c ≥ 1
2Re(λ2(L)) , then the

distributed controllers in (4.3) guarantee that the systems in (4.1) are synchronized. In particular, x?(t) =

(wT
l ⊗ eAt)x0.

4.2.2.2 Synchronization to a Leader

The dynamics of the leader node is given by

ṙ(t) = Ar(t), r(0) = r0, t ≥ 0, (4.5)

where r(t) ∈ Rn is the state and the tracking error (i.e., r(t)− xi(t)) is available to a small subset of the

agents in N . Specifically, if node vi in V observes the leader node v0, then there exists an edge (v0,vi) with
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weighting gain si > 0; otherwise si = 0. Each agent has also access to the relative state information. Based

on the available information, every agent implements the following distributed controller17

ui(t)=cK
(

∑
j∈Ni

ai j
(
x j(t)−xi(t)

)
+ si
(
r(t)−xi(t)

))
. (4.6)

By inserting (4.6) into (4.1), recalling x(t) from Section 4.2.2.1, and defining S , diag(s1, . . . ,sN) and

ra(t), 1N⊗ r(t), the dynamics of all agents can be written as

ẋ(t) =
(
IN⊗A− c(L+S)⊗BK

)
x(t)+

(
c(L+S)⊗BK

)
ra(t), x(0) = x0, t ≥ 0.

Let us define the synchronization to the leader in (4.5) for the problem in [19].

Definition 4.2.2 The systems in (4.1) with the distributed controllers of the form (4.6) are said to synchro-

nize to the leader in (4.5) if for all x0 ∈ RNn and r0 ∈ Rn, limt→∞

(
xi(t)− r(t)

)
= 0 for all i ∈N .

Assumption 4.2.3 The fixed augmented directed graph Ḡ has a spanning tree18.

Under Assumption 4.2.3, all the eigenvalues of L+S have positive real parts (e.g., see Lemma 3.3

in [5]). Let λ1(L+S) be an eigenvalue of L+S closest to the imaginary axis. Now, Theorem 1 of [19]

is stated in Theorem 4.2.2 and it is a counterpart of Theorem 4.2.1 for the synchronization to the leader in

(4.5).

Theorem 4.2.2 Consider the systems in (4.1) and (4.5). Let K , R−1BTP, where P is the positive definite

solution to (4.2) under the assumptions as in Lemma 4.2.1. Let Assumption 4.2.3 hold. If c≥ 1
2Re(λ1(L+S)) ,

then the distributed controllers in (4.6) guarantee that the systems in (4.1) synchronize to the leader in (4.5).

4.2.3 Results on Boundedness and Convergence

We next concisely present useful lemmas, which are proven in Appendix C for the sake of com-

pleteness, on boundedness and convergence of piecewise continuous functions, and the converging-input

converging-state property for a class of linear systems.

17For every distributed controller using the term si(r(t)− xi(t)) in this paper, si is a weighting gain and it has the same
definition as in Section 4.2.2.2.

18By definition of the fixed augmented directed graph given in Section 4.2.1, Assumption 4.2.3 holds if and only if the leader
node has a directed path to every other node in Ḡ.
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Lemma 4.2.3 Let f : R≥0→ Rn be a piecewise continuous19 function. If limt→∞ f (t) = h ∈ Rn, then f is

bounded.

Lemma 4.2.4 Let f : R≥0→ Rn be a continuous function. Let g : R≥0→
{

0,1
}

be a piecewise constant20

function. If limt→∞ g(t) = 0, then limt→∞(g f )(t) = 0, where (g f )(t) = g(t) f (t).

Consider now the dynamical system given by

ζ̇ (t) = Acζ (t)+η(t), ζ (0) = ζ0, t ≥ 0, (4.7)

where ζ (t) ∈ Rn is the state and η(t) ∈ Rn is the input, which is a piecewise continuous function of t.

Lemma 4.2.5 Let Ac be Hurwitz. If limt→∞ η(t) = 0, then limt→∞ ζ (t) = 0 for all ζ0 ∈ Rn.

4.3 Problem Formulation

In this paper, we consider a system of N agents with identical dynamics given by (4.1) over a

fixed directed communication graph G. In addition, the multiagent system is subject to both global and

local objectives. Specifically, the former is either leaderless synchronization or synchronization to the

leader in (4.5) and the latter is associated with the tasks assigned to a subset of agents with respect to

the synchronization mapping of the global objective by means of agent-specific dynamics (see Definitions

4.3.1 and 4.3.2, and Remark 4.3.2).

To this end, let Np (respectively, Np′) denote the set of all agents that are (respectively, are not)

assigned the local tasks, where the roles of agents are fixed (i.e., Np and Np′ do not change in t). Notice

that N =Np ∪Np′ and Np ∩Np′ = /0. Now, without loss of generality, we assume the index sets as Np ={
1, . . . , p

}
and Np′ =

{
p+1, . . . ,N

}
throughout this paper.

A subset of state variables of each agent in Np is selected through

yi(t) =Cixi(t), (4.8)

19In this paper, we follow the equivalent definitions of real vector-valued piecewise continuous functions given in page 650 of
[55] and Definition 2.32 of [66].

20Note that every piecewise constant function is piecewise continuous, but the converse is not true.
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where yi(t) ∈ Rli , and the agent-specific dynamical system is given by

δ̇i(t) = Γiδi(t), δi(0) = δi0, t ≥ 0, (4.9)

ωi(t) = Fiδi(t), (4.10)

for each agent in Np to assign local tasks around the synchronization mapping of the global objective,

where δi(t) ∈ Rhi is the state and ωi(t) ∈ Rli is the output. Let δ (t) , [δ T
1 (t), . . . ,δ

T
p (t)]

T ∈ Rh̄ and ω(t) ,

[ωT
1 (t), . . . ,ω

T
p (t)]

T ∈ Rl̄ , where h̄ = ∑
p
i=1 hi and l̄ = ∑

p
i=1 li. Moreover, let Γ , diag(Γ1, . . . ,Γp) and F ,

diag(F1, . . . ,Fp). Then, the following aggregated dynamics arises from (4.9) and (4.10)

δ̇ (t) = Γδ (t), δ (0) = δ0, t ≥ 0, (4.11)

ω(t) = Fδ (t). (4.12)

4.3.1 Leaderless Synchronization as a Global Objective

We now introduce two classes of distributed controllers and define the problem, where the global

objective is leaderless synchronization. While these controllers have the same goal (see Definition 4.3.1),

they differ from each other in some ways such as required types of information and assumptions behind

them, which will be highlighted in Remarks 4.3.1, 4.4.1, 4.4.3, and 4.4.4 later.

Based on Theorem 4.2.1, we consider the following reference model for each agent

ẋri(t) = Axri(t)+ cBK ∑
j∈Ni

ai j
(
xr j(t)− xri(t)

)
, xri(0) = xri0, t ≥ 0. (4.13)

By forming xr(t), [xT
r1(t), . . . ,x

T
rN(t)]

T ∈ RNn, the dynamics of all reference models can be written as

ẋr(t)=(IN⊗A−cL⊗BK)xr(t), xr(0) = xr0, t ≥ 0. (4.14)
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4.3.1.1 First Distributed Controllers

The first controllers21 are now given by (4.13) and

ui(t)=cK ∑
j∈Ni

ai j
(
xr j(t)−xri(t)

)
+l1iK

(
xri(t)−xi(t)

)
+ki

(
K ∑

j∈Ni\Np

ai j
(
x j(t)−xi(t)

)
+Hiθi(t)δi(t)

)
, (4.15)

where Hi ∈Rm×hi is a feedforward gain and θi(t)∈
{

0,1
}

is a piecewise constant function of t used to assign

the local task of the agent i; specifically, it is assigned (respectively, removed) if θi is set to 1 (respectively,

0). Moreover, ki ∈ R>0 if i ∈ Np, ki = 0 otherwise and l1i ∈ R>0 if i ∈ Np′ , l1i = 0 otherwise. In (4.15), the

first summation assumes that every agent exchanges its controller’s state with its neighboring agents. By the

definition of ki, the terms multiplied by ki are only effective when the agent belongs toNp. Thus, each agent

in Np has access to the relative state information between itself and its neighbors in Ni \Np and the state of

its agent-specific dynamics. Likewise, the damping term xri(t)− xi(t) is only used by the agents in Np′ .

4.3.1.2 Second Distributed Controllers

Consider the reference models in (4.13) and remove the second summation in the output equations

(4.15) of the first controllers and allow all agents in N to use the damping term in (4.15) as

ui(t)=cK ∑
j∈Ni

ai j
(
xr j(t)−xri(t)

)
+l2iK

(
xri(t)−xi(t)

)
+ kiHiθi(t)δi(t), (4.16)

where l2i ∈ R>0 for all i ∈N .

Remark 4.3.1 For the agents in Np′ , the first and second controllers use the same types of information.

On the other hand, for the agents in Np, there are some differences in the required types of information:

Unlike the first controllers, the second ones do not need the relative state measurement. Thus, they reduce

the amount of relative information required by the first controllers. However, to implement the second

controllers, every agent inNp must also be capable of measuring its own state since every controller utilizes

the damping term. Hence, the second controllers make use of more self-information than the first ones. In

swarm robotics, the first controllers can be preferred to the second ones since sensors measuring relative

states can decrease the measurement cost.

21For every introduced distributed controller in this paper, Hi is a feedforward gain, and ki and θi(t) have the same definition
as in the first controllers.
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4.3.1.3 Problem Definition

According to Definition 4.2.1, Theorem 4.2.1, and the harmony of the global and local objectives of

the multiagent system raised in [49], the problem considered in this paper for leaderless synchronization as

a global objective is defined as follows:

Definition 4.3.1 Given the systems in (4.1) with Assumption 4.2.1, the fixed directed graph G, which satisfies

Assumption 4.2.2, the setsNp andNp′ , the output equations in (4.8), and the systems in (4.9) and (4.10), find

distributed controllers of the form (4.13) and (4.15) or (4.13) and (4.16) such that for all initial conditions

(i.e., x0 ∈ RNn, xr0 ∈ RNn, and δ0 ∈ Rh̄) of the closed-loop system, the following properties hold:

i) limt→∞

(
xi(t)− x?r (t)

)
= 0 for all i ∈Np′ , where x?r (t) = (wT

l ⊗ eAt)xr0,

ii) limt→∞

(
xi(t)− x?r (t)

)
= 0 if limt→∞ θi(t) = 0 for any i ∈Np,

iii) limt→∞

(
yi(t)−

(
y?i (t)+ωi(t)

))
= 0 if limt→∞ θi(t) = 1 for any i ∈Np, where y?i (t) =Cix?r (t).

Remark 4.3.2 A few notes regarding the properties given by Definition 4.3.1 are in order: The properties

i) and ii) say that the agents in Np′ obey the global objective of the multiagent system and any agent in Np

obeys the global objective after the removal of its local objective, respectively. In addition, the property

iii) specifies the local objective of any agent in Np with respect to the global objective of the multiagent

system. Notice that the global objective is independent of the local objectives of the agents in Np (i.e.,

x?r (t) does not depend on the agent-specific dynamics given by (4.9) and (4.10)). This feature makes the

problem in Definition 4.3.1 completely different from the formation control problem studied in [67] and

[68]. Specifically, the formation reference function is directly affected by the formation in [67] and [68]

(e.g., see Definition 1, Theorem 2, and Remark 7 in [67]). Therefore, even if we take Ci = In for all i ∈ Np,

the reference formation function and the formation cannot be regarded as the global objective and the local

objective of the multiagent system, respectively.

Remark 4.3.3 The mapping x?r (t) of the global objective is dependent on the graph topology G, the system

matrix A of each agent, and the initial values xr0 of the reference models. Therefore, xr0 can be used to

modify22 x?r (t) although it cannot be specified arbitrarily. If one sets xr0 = x0, the map x?r (t) becomes the

original synchronization mapping x?(t) given in Theorem 4.2.1.

22Note that eAt is nonsingular for every t ∈ R≥0 and recall that wl is an eigenvector of LT. Thus, wT
l ⊗ eAt has full row rank for

every t ∈ R≥0. Fix t∗ ∈ R≥0. Then, for every x∗r ∈ Rn, there exists an xr0 ∈ RNn such that x∗r = (wT
l ⊗ eAt∗)xr0.
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4.3.2 Synchronization to a Leader as a Global Objective

Next, the term si
(
r(t)− xri(t)

)
is incorporated into the controllers of Section 4.3.1 to make them

suitable for synchronization to the leader in (4.5) as a global objective.

First, based on Theorem 4.2.2, (4.13) is adjusted as follows

ẋri(t) = Axri(t)+ cBK
(

∑
j∈Ni

ai j
(
xr j(t)−xri(t)

)
+si
(
r(t)−xri(t)

))
, xri(0) = xri0, t ≥ 0. (4.17)

4.3.2.1 First Distributed Controllers

Accordingly, instead of (4.15), we have the following output equations for the controllers

ui(t) = cK
(

∑
j∈Ni

ai j
(
xr j(t)−xri(t)

)
+si
(
r(t)−xri(t)

))
+ l1iK

(
xri(t)−xi(t)

)
+ki

(
K ∑

j∈Ni\Np

ai j
(
x j(t)−xi(t)

)
+Hiθi(t)δi(t)

)
. (4.18)

4.3.2.2 Second Distributed Controllers

In place of (4.16), we consider

ui(t) = cK
(

∑
j∈Ni

ai j
(
xr j(t)−xri(t)

)
+si
(
r(t)−xri(t)

))
+ l2iK

(
xri(t)−xi(t)

)
+ kiHiθi(t)δi(t). (4.19)

4.3.2.3 Problem Definition

When the global objective of the multiagent system is synchronization to the leader in (4.5), the

next definition slightly modifies Definition 4.3.1 by taking Definition 4.2.2 into account.

Definition 4.3.2 Given the systems in (4.1) with Assumption 4.2.1, the system in (4.5), the fixed augmented

directed graph Ḡ, which satisfies Assumption 4.2.3, the sets Np and Np′ , the output equations in (4.8), and

the systems in (4.9) and (4.10), find distributed controllers of the form (4.17) and (4.18) or (4.17) and (4.19)

such that for all initial conditions (i.e., x0 ∈RNn, r0 ∈Rn, xr0 ∈RNn, and δ0 ∈Rh̄) of the closed-loop system,

the following properties hold:

i) limt→∞

(
xi(t)− r(t)

)
= 0 for all i ∈Np′ ,
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ii) limt→∞

(
xi(t)− r(t)

)
= 0 if limt→∞ θi(t) = 0 for any i ∈Np,

iii) limt→∞

(
yi(t)−

(
y?i (t)+ωi(t)

))
= 0 if limt→∞ θi(t) = 1 for any i ∈Np, where y?i (t) =Cir(t).

Remark 4.3.4 In general, the set of formation vectors for an agent in the time-varying formation tracking

problem with one leader, which is investigated in Corollary 1 of [69], differs from the local objectives given

in Definition 4.3.2. Essentially, the formation vector is allocated to each state variable of the agent, while

the local objective can be associated with a proper subset of its state variables. It is also worth mentioning

that global and local generalized disturbances introduced in [40] can be interpreted as global and local

objectives in the context of leader-following consensus problems. If the distributed regulator in Theorem

3 of [40] is adjusted in such a way that the properties of Definition 4.3.2 are satisfied, then an alternative

solution to the problem can be obtained.

4.3.3 Assumptions and Lemmas from Output Regulation Theory

To satisfy the property iii) of Definitions 4.3.1 and 4.3.2, this paper makes the additional standard

assumptions from the linear output regulation theory (e.g., see Chapter 1 of [25]) as follows:

Assumption 4.3.1 Γi ∈ Rhi×hi has no eigenvalues with negative real parts for all i ∈Np.

Assumption 4.3.2 For all i ∈ Np, there exist Xi and Ui that satisfy the following linear matrix equations

(i.e., regulator equations)

XiΓi = AXi +BUi, (4.20)

0 = CiXi−Fi. (4.21)

The next lemma immediately follows from Theorem 1.7 and Lemma 1.4 in [25].

Lemma 4.3.1 Under Assumption 4.2.1, let the feedback gain K1i be such that A+BK1i is Hurwitz for all

i ∈ Np. Let Assumptions 4.3.1 and 4.3.2 hold. If the feedforward gain K2i =Ui−K1iXi for all i ∈ Np, then
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the following linear matrix equations

X̃iΓi = (A+BK1i)X̃i +BK2i, (4.22)

0 = CiX̃i−Fi (4.23)

have a unique solution X̃i for all i ∈Np.

For any agent i ∈Np, we consider a generic dynamical system given by

˙̃
ζi(t) = (A+BK1i)ζ̃i(t)+BK2iδi(t)+φi(t), ζ̃i(0) = ζ̃i0, t ≥ 0, (4.24)

β̃i(t) = Ciζ̃i(t)−ωi(t), (4.25)

where ζ̃i(t) ∈ Rn is the state and φi(t) ∈ Rn is the piecewise continuous input. In Section 4.4, this generic

dynamical system is utilized together with the next lemma. If φi(t) = 0,∀t ≥ 0, then Lemma 4.3.2 is a

special case of Lemma 1.4 in [25], where its proof is given in Appendix C.

Lemma 4.3.2 Consider the hypotheses of Lemma 4.3.1 and the system in (4.24) and (4.25). If limt→∞ φi(t)=

0, then limt→∞ β̃i(t) = 0 for all ζ̃i0 ∈ Rn and δi0 ∈ Rhi .

4.4 Main Results

This section proposes approaches to design the distributed controllers introduced in Section 4.3 for

the problems stated in Definitions 4.3.1 and 4.3.2.

4.4.1 Solutions to the Problem in Definition 4.3.1

First, define the error between the state of each agent and the state of its corresponding reference

model as

x̃i(t), xi(t)− xri(t). (4.26)
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4.4.1.1 Synthesis of First Distributed Controllers

Inserting (4.15) into (4.1) and using (4.13) together with (4.26), the error dynamics of each agent

can be written as

˙̃xi(t) = (A− l1iBK)x̃i(t)+ kiB
(

K ∑
j∈Ni\Np

ai j
(
x̃ j(t)−x̃i(t)+xr j(t)−xri(t)

)
+Hiθi(t)δi(t)

)
,

x̃i(0) = x̃i0, t ≥ 0. (4.27)

To exploit the first controllers given by (4.13) and (4.15), the following assumption is required.

Assumption 4.4.1 For all i ∈Np, Ni \Np is nonempty.

Remark 4.4.1 Let dpi ,∑ j∈Ni\Np ai j be the another in-degree for each agent inNp. Thus, Assumption 4.4.1

is equivalent to dpi ∈ R>0 for all i ∈ Np. Here, we note that this assumption is not necessary to solve the

problem stated in Definition 4.3.1; specifically, it is not required in the second controllers.

We now state one of the main results of this paper whose overall conclusion is that the distributed

controllers in (4.13) and (4.15) with an appropriate design approach solve the problem in Definition 4.3.1.

Theorem 4.4.1 Consider the hypotheses of Theorem 4.2.1 and the controllers in (4.13) and (4.15). If l1i ≥

0.5 for all i ∈ Np′ , then the property i) of Definition 4.3.1 holds. If, in addition, kidpi ≥ 0.5 for all i ∈ Np,

then the property ii) of Definition 4.3.1 holds. Furthermore, let Assumptions 4.3.1 and 4.3.2 hold and

Hi , k−1
i Ui +dpiKXi for all i ∈Np. Then the property iii) of Definition 4.3.1 holds.

Proof. Let xr0 ∈ RNn be given. By Theorem 4.2.1, limt→∞

(
xri(t)− x?r (t)

)
= 0 for all i ∈ N . Let

x0 ∈ RNn and δ0 ∈ Rh̄ be given. First, fix i ∈ Np′ . Then the error dynamics in (4.27) reduces to the form

given by

˙̃xi(t) = (A− l1iBK)x̃i(t), x̃i(0) = x̃i0, t ≥ 0. (4.28)

Since l1i ≥ 0.5 for all i ∈Np′ , A− l1iBK is Hurwitz for all i ∈Np′ by Lemma 4.2.2. Hence, limt→∞ x̃i(t) = 0.

Since limt→∞

(
xri(t)− x?r (t)

)
= 0 and limt→∞ x̃i(t) = 0, limt→∞

(
xi(t)− x?r (t)

)
= 0, which gives the first

conclusion of the theorem.
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Second, let i ∈Np. Define ρi(t), ∑ j∈Ni\Np ai jx̃ j(t) and µi(t), ∑ j∈Ni\Np ai j
(
xr j(t)− xri(t)

)
. Using

the definition of dpi, (4.27) can now be written as

˙̃xi(t) = (A−kidpiBK)x̃i(t)+ kiB
(

K
(
ρi(t)+µi(t)

)
+Hiθi(t)δi(t)

)
, x̃i(0) = x̃i0, t ≥ 0. (4.29)

Since kidpi ≥ 0.5 for all i∈Np, A−kidpiBK is Hurwitz for all i∈Np by Lemma 4.2.2. Note that the solution

of the linear time-invariant system in (4.14) is continuous on [0,∞); that is, xri(t) is continuous on [0,∞) for

all i ∈N . Thus, µi(t) is a continuous function of t. Similarly, δi(t) is a continuous function of t. By the first

part of the proof, ρi(t) is a continuous function of t and limt→∞ ρi(t) = 0. Moreover, limt→∞ µi(t) = 0 since

all the reference models are synchronized. For the second conclusion of the theorem, let limt→∞ θi(t) = 0.

By Lemma 4.2.4, limt→∞ Hiθi(t)δi(t) = 0. Clearly, kiB
(

K
(
ρi(t)+ µi(t)

)
+Hiθi(t)δi(t)

)
is a convergent

piecewise continuous function of t to 0. By Lemma 4.2.5, limt→∞ x̃i(t) = 0. Hence, the property ii) of

Definition 4.3.1 follows from the same argument in the first part of the proof. For the third conclusion

of the theorem, let limt→∞ θi(t) = 1. Put ẽi(t) , Cix̃i(t)−ωi(t). Observe that yi(t)−
(
y?i (t) +ωi(t)

)
=

ẽi(t)+Ci
(
xri(t)− x?r (t)

)
. Now, it suffices to show that limt→∞ ẽi(t) = 0. Let K1i , −kidpiK and K2i , kiHi.

Then, (4.29) can be rewritten as

˙̃xi(t) = (A+BK1i)x̃i(t)+BK2iδi(t)+ kiB
(

K
(
ρi(t)+µi(t)

)
−Hi

(
1−θi(t)

)
δi(t)

)
,

x̃i(0) = x̃i0, t ≥ 0. (4.30)

By Lemma 4.2.4, limt→∞ Hi
(
1− θi(t)

)
δi(t) = 0. Clearly, kiB

(
K
(
ρi(t)+ µi(t)

)
−Hi

(
1− θi(t)

)
δi(t)

)
is a

convergent piecewise continuous function of t to 0. Using the given definition of Hi, it can be seen that

K2i =Ui−K1iXi. All the conditions of Lemma 4.3.2 therefore hold. Hence, limt→∞ ẽi(t) = 0, as desired. �

Remark 4.4.2 We have not incorporated Assumption 4.4.1 into the preceding theorem explicitly. However,

Assumption 4.4.1 is necessary for the following condition given in Theorem 4.4.1: kidpi ≥ 0.5 for all i ∈Np.

If each nonzero ai j and ki is 1, then Assumption 4.4.1 is also sufficient.
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4.4.1.2 Synthesis of Second Distributed Controllers

Inserting (4.16) into (4.1) and using (4.13) together with (4.26), the error dynamics of each agent

can be written as

˙̃xi(t) = (A− l2iBK)x̃i(t)+ kiBHiθi(t)δi(t), x̃i(0) = x̃i0, t ≥ 0. (4.31)

The distributed controllers in (4.13) and (4.16) with the following design approach address the problem in

Definition 4.3.1. The proof of Theorem 4.4.2 is similar to Theorem 4.4.1; hence, we omit it.

Theorem 4.4.2 Consider the hypotheses of Theorem 4.2.1 and the controllers in (4.13) and (4.16). If l2i ≥

0.5 for all i ∈ N , then the properties i) and ii) of Definition 4.3.1 hold. Furthermore, let Assumptions 4.3.1

and 4.3.2 hold and Hi , k−1
i (Ui + l2iKXi) for all i ∈Np. Then the property iii) of Definition 4.3.1 holds.

Remark 4.4.3 In contrast to the first controllers, the feedforward gain Hi of the agents inNp for the second

controllers is independent of the graph topology (i.e., dpi).

Remark 4.4.4 Let the first and second controllers have the same feedback gain K. Then, for the agents in

Np′ , the error dynamics due to the first and second controllers can be made identical by choosing l1i = l2i

for all i ∈ Np′ . Therefore, the responses of the agents in Np′ with the first controllers are identical to the

responses with the second controllers under the same initial conditions (see the examples in Section 4.5).

Moreover, let the first and second controllers use the same solutions of the regulator equations. Under

Assumption 4.4.1, for the agents in Np, both the system matrices of the error dynamics and the feedforward

gains Hi due to the first and second controllers can now be made identical by taking ki = l2i/dpi for all

i ∈ Np. With the above choices, for the agents in Np, the term kiBK(ρi(t) + µi(t)), which converges to

0, in (4.29) is the only term that can yield different performances for the first and second controllers.

However, under the same initial conditions, the responses of the agents in Np with the first controllers

will become indistinguishable from the responses with the second controllers after the decay of this term

(see the examples in Section 4.5).
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4.4.2 Solutions to the Problem in Definition 4.3.2

Since the stability analyses are similar to the ones in Section 4.4.1, we omit the details and proofs.

Following the steps in Section 4.4.1.1, one readily sees that (4.17) and (4.18) yield (4.27). Likewise, (4.17)

and (4.19) yield (4.31). Not surprisingly, we have the solutions given in Propositions 4.4.1 and 4.4.2.

Proposition 4.4.1 Consider the hypotheses of Theorem 4.2.2 and the controllers in (4.17) and (4.18). If

l1i ≥ 0.5 for all i ∈ Np′ , then the property i) of Definition 4.3.2 holds. If, in addition, kidpi ≥ 0.5 for all

i ∈ Np, then the property ii) of Definition 4.3.2 holds. Furthermore, let Assumptions 4.3.1 and 4.3.2 hold

and Hi , k−1
i Ui +dpiKXi for all i ∈Np. Then the property iii) of Definition 4.3.2 holds.

Proposition 4.4.2 Consider the hypotheses of Theorem 4.2.2 and the controllers in (4.17) and (4.19). If

l2i ≥ 0.5 for all i ∈ N , then the properties i) and ii) of Definition 4.3.2 hold. Furthermore, let Assumptions

4.3.1 and 4.3.2 hold and Hi, k−1
i (Ui+ l2iKXi) for all i∈Np. Then the property iii) of Definition 4.3.2 holds.

4.5 Numerical Examples

In this section, we present numerical examples about the theoretical results provided in Section 4.4.

The communication graphs G and Ḡ described in Figure 4.1 are used for these examples. It is also assumed

that p = 3, that is; Np =
{

1,2,3
}

. With this setup, Assumptions 4.2.2, 4.2.3, and 4.4.1 are clearly satisfied.

In the simulations, we take ai j = 1 whenever ai j ∈R>0. We apply the same rule to the parameters ki, l1i, l2i,

and si.

1

3

5 4

6

728

9

0

Figure 4.1: The directed communication graph G, which does not include the leader node v0, and the
augmented directed communication graph Ḡ, which includes the leader node and the edges denoted by
dashed arrows.
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4.5.1 First Example

To illustrate the results in Section 4.4.1, we consider nine agents that have fourth-order dynamics,

where xi(t) = [xi1(t),xi2(t),xi3(t),xi4(t)]T, with the following system and input matrices

A=



−1 1 0 1

0 0 1 0

0.000625 −0.0625 0.01 0

1 −0.5 0 −1


, B=



0 1

2 1

0 1

1 0


, (4.32)

and output matrices for the agents in Np

Ci =

1 0 0 0

0 0 1 0

, i = 1,2, C3=

0 1 0 0

0 0 1 0

, (4.33)

over the graph G in Figure 4.1. Moreover, the agent-specific dynamical systems of the agents in Np are

determined by

Γi =


0 0 0

0 0 1

0 0 0

, Fi=

1 0 0

0 1 0

, i = 1,2, (4.34)

Γ3 =



−1.5 0.5 −1.5 1

−2.25 1.25 −0.25 2.25

1.125 −0.625 0.625 −0.375

0.125 −0.625 −1.375 −0.375


, F3=C3. (4.35)

With the given matrices, Assumptions 4.2.1 and 4.3.1 hold. Assumption 4.3.2 also holds by Theorem 1.9 in

[25] since Assumption 1.4 in [25] is satisfied for each agent in Np.

We take Q = I4 and R = I2 in (4.2). Then, the feedback gain K, given in Lemma 4.2.1, is computed

through the unique positive definite solution to (4.2) (e.g., see MATLAB function lqr). The coupling gain

c is also set to 1. Hence, the conditions of Theorem 1 are satisfied. Note that the regulator equations in

(4.20) and (4.21) can be transformed into systems of linear equations (see the proof of Theorem 1.9 in [25]).

For the agents in Np, the resulting systems of linear equations have unique solutions since each matrix of
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coefficients for these systems is nonsingular. With these solutions, the feedforward gains Hi of the agents in

Np for the first and second distributed controllers, given in Theorems 4.4.1 and 4.4.2, are computed. Thus,

our numerical setup satisfies every condition in Theorems 4.4.1 and 4.4.2.

The initial conditions of the agents and their corresponding reference models are given by xi0 =

[ i
4(−1)i,0, i

4(−1)i,0]T and xri0 =
i

10 14 for all i ∈ N . Moreover, the initial conditions of (4.9) are given by

δ10 = [2,0,0.02]T, δ20 = [−2,0,−0.02]T, and δ30 =
1
2 14.

Finally, let θ1(t) = θ2(t) = 1 if t ∈ [10,50) sec, θ1(t) = θ2(t) = 0 otherwise. Let θ3(t) = 1 if

t ∈ [30,70) sec, θ3(t) = 0 otherwise. These inform the first three agents that the first and second ones have

local objectives only from 10 to 50 sec, and the third one has local objective only from 30 to 70 sec. Now,

the responses of all agents with the first and second distributed controllers are illustrated in Figures 4.2 and

4.3. As expected by Theorems 4.4.1 and 4.4.2, every agent in Np′ obeys the global objective x?r (t) of the

multiagent system and every agent inNp performs its own local objective ωi(t) around y?i (t) if it is assigned

and obeys the global objective otherwise.
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Figure 4.2: Responses of all agents with the first distributed controllers.
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Figure 4.3: Responses of all agents with the second distributed controllers.

4.5.2 Second Example

Now, our aim is to illustrate the results in Section 4.4.2. For brevity, we only give the changes with

respect to the previous subsection. First, replace (4.32) by

A =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


, B =



0 0

1 0

0 0

0 1


, (4.36)

and (4.33) by

Ci =

1 0 0 0

0 0 1 0

 , i = 1,2,3. (4.37)
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Consider the augmented graph Ḡ in Figure 4.1. Instead of (4.34) and (4.35), we have Γ1 = 0, Γ2 = A,

F1 = F3 = I2, F2 =C1, and

Γ3 =

 0 2

−2 0

 . (4.38)

Then, we take Q = diag(10,1,10,1) and R = I2 in (4.2) and the coupling gain c = 2. By following the

procedure in Section 4.5.1, the feedback gain K and the feedforward gains Hi are obtained. Moreover,

all initial conditions are selected as follows: xi0 = [ i
4(−1)i,0,0,0]T and xri0 = xi0 for all i ∈ N ; r0 =

[0,−2,1,0]T, δ10 = [3,2]T, δ20 = [0,2,−1,0]T, and δ30 = [0,0.5]T. Let θ1(t) = θ2(t) = 1 if t ∈ [15,45)

sec, θ1(t) = θ2(t) = 0 otherwise. Let θ3(t) = 1 if t ∈ [30,45) sec, θ3(t) = 0 otherwise.

Each agent in this example may be regarded as an undamped vehicle. In particular, the first and

third state variables of the agents correspond to the positions in the x and y directions, respectively, while the

second and fourth ones correspond to the velocities in the x and y directions, respectively. Because of the

output matrices in (4.37), local objectives of the agents in Np are related to their positions. In Figures 4.4

and 4.5, the position trajectory of each agent is presented with the first and second distributed controllers,

where yi = Cixi with Ci = C1 for all i ∈ Np′ and y? = C1r. Also, “o” denotes the position of each agent at

t = 0, t = 15, t = 30, and t = 45 sec in the subplots. It is observed that every agent in Np′ synchronizes to

the leader in (4.5) whose position trajectory is an ellipse. On the other hand, the agents 1, 2, and 3 track

another ellipse, go to the origin, and track another geometric trajectory, respectively, when they are assigned

the local tasks and synchronize to the leader otherwise.

4.6 Conclusion

The current literature of distributed control provides useful methods to achieve a wide range of

global objectives for multiagent systems. In this paper, we have considered networks of agents with not

only global but also local objectives. For linear time-invariant multiagent systems over fixed directed

communication graph topologies, we defined agent-specific dynamics to assign local tasks to a subset of

agents around the global objective of the multiagent system, constructed reference models for all agents

by means of two existing synchronization results, and introduced two classes of distributed controllers.

We then system-theoretically stated the considered control problems and solved them by both employing
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Figure 4.4: Position trajectories of all agents with the first distributed controllers.

the converging-input converging-state property for a class of linear systems and applying the feedforward

design methodology from the linear output regulation theory. In short, the second controllers are superior in

terms of restriction and dependence on communication graphs (see Remarks 4.4.1 and 4.4.3) and transient

performance (see Remark 4.4.4), whereas the first controllers may incur less measurement cost than the

second controllers (see Remark 4.3.1).

Although leaderless synchronization and synchronization to a leader are considered in this paper as

global objectives, we expect that our framework can be useful for other global objectives such as containment

and formation once reference models for agents are constructed through some results addressing these global

objectives. Furthermore, it can be desirable in practical applications that some agents perform different local

objectives. Our results can also be extended to this case by introducing various agent-specific dynamical

systems for each of these agents and utilizing the state of one of the introduced systems together with its
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Figure 4.5: Position trajectories of all agents with the second distributed controllers.

corresponding feedforward gain in distributed controllers depending on the current local objective for each

of them. Other research directions include, but are not limited to, the accomplishment of agents’ local

objectives in finite time and the investigation of another problem led by local objectives that are determined

directly (i.e., they are not relative to the global one).
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Chapter 5: Concluding Remarks

This work has investigated three aspects of distributed control problems arising from networks of

heterogeneous agents or the heterogeneous nature of multiagent systems. In this chapter, we summarize our

results and provide a few directions for future research inspired by them.

5.1 Conclusions

We studied the cooperative output regulation problem of heterogeneous linear time-invariant multi-

agent systems over fixed directed communication graph topologies in Chapter 2. For three internal model-

based distributed control laws, namely dynamic state feedback, dynamic output feedback with local mea-

surement, and dynamic output feedback, the solvability of the problem was investigated in two steps. First,

the overall closed-loop stability (i.e., global property), which requires both the dynamics of every agent and

the communication graph, was assumed and it was proved, under mild assumptions, that the problem is

solved. Second, an agent-wise local sufficient condition, which paves the way for independent controller

design for each agent, was provided to ensure the global property under standard assumptions. We also

reported and addressed a considerable number of gaps in the existing related literature.

In Chapter 3, the definition of the linear cooperative output regulation problem was updated to allow

not only the primary synchronization role but also a secondary synchronization role for a distributed dynamic

state feedback control law that does not rely on the exchange of its state variables. Similar to Chapter 2,

the solvability of the updated problem was investigated by employing the internal model approach and a

small-gain theorem. It should be emphasized that the proposed distributed control laws in Chapters 2 and 3

solves the linear robust cooperative output regulation problem as well.

In this dissertation, we also focused on distributed control problems of linear time-invariant mul-

tiagent systems with both global and local objectives. Specifically, we defined agent-specific dynamics to

assign local tasks to a subset of agents around the global objective of the multiagent system, constructed

reference models for all agents by means of two existing synchronization results, and introduced two classes
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of distributed controllers. We then system-theoretically stated the considered control problems and solved

them by making use of the converging-input converging-state property for a class of linear systems and the

feedforward approach of the linear output regulation theory.

5.2 Recommendations for Future Research

The communication graph was assumed to be fixed throughout this work. However, in practice,

it can be switching due to unreliable communication links. Thus, extensions of our results, particularly

cooperative output regulation results, to switching topologies would be a major development.

The agent-wise local sufficient conditions in Chapters 2 and 3 are the salient outcomes of this work.

For all their importance, the agent-wise local sufficient condition in Chapter 3 can be more conservative than

the corresponding one in Chapter 2 because of the following reasons: First, unlikeFA, the spectral radius of

Qmay not be less than 1. Second, instead of one L2 gain, two L2 gains for each agent need to be minimized

in Chapter 3. Therefore, further research on relaxation of the agent-wise local sufficient condition for the

linear cooperative output regulation problem in Chapter 3 is recommended. In addition, future research

can extend the results of Chapter 3 to multiple secondary synchronization roles. As in Chapter 2, dynamic

output feedback control laws can also be considered for the problem in Chapter 3.

According to the problem definitions in Chapter 4, agents are expected to achieve their local objec-

tives asymptotically. However, the accomplishment of agents’ local objectives in finite time or prescribed

time would be desired for time critical applications.
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Appendix A: Solvability of (2.26) and (2.27)

Section III in [1] also studies the solvability of the matrix equations in (2.26) and (2.27), which

correspond to the matrix equations given by (6) in [1], with an alternative approach. Specifically, the last

paragraph of Section III in [1] lists three sufficient conditions based on Remark 3.8 of [70] to guarantee

that these matrix equations have a unique solution. However, it cannot be guaranteed as it is claimed in [1].

This section aims to present the gaps between the conditions and the existence of a unique solution to the

matrix equations, propose appropriate modifications that fill these gaps, and explain the motivation behind

our approach. For this purpose, we first focus on Definition 3.7 and Remark 3.8 in [70] to fix a problem

in [70]. Then, we revisit the conditions listed in [1] to point out the missing one. Finally, a motivational

example is provided and the difference between the approach in [1] and the one in this paper is highlighted.

In this paragraph, the notation and the terminology in [70] are adopted and readers are referred

to (3.5), (3.6), (3.8), Definition 3.7, and Remark 3.8 in [70]. The problem in [70] is that the conditions

of Remark 3.8 do not ensure the stabilizability of the pair given by (3.8). Moreover, this problem is

directly transferred to [1]. To illustrate this point, we consider the following system, input, output, and

direct feedthrough matrices of the plant; and system matrix of the exosystem

A =

1 2

1 0

 , B =

2

0

 , C =

[
0.5 −0.5

]
, D = 0, A1 = 0.

It can be easily checked that the plant and the exosystem above satisfy the first and the second conditions of

Remark 3.8. Note that m(s) = s is the minimal polynomial of A1. Then, choose the pair (β1,σ1) in (3.6) as

follows

β1 =

0 1

0 1

 , σ1 =

0

1

 .
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It is obvious that the pair (β1,σ1) is controllable and the minimal polynomial of A1 divides the characteristic

polynomial of β1. Thus, the pair (G1,G2) , (β1,σ1) incorporates a 1-copy internal model of A1 according

to Definition 3.7. Let us now investigate the stabilizability of the pair in (3.8). This pair is not controllable

by the controllability matrix test (e.g., see Theorem 12.1 in [59]) and the eigenvalues of the first matrix of

this pair are −1, 0, 1, and 2. The eigenvector test for stabilizability (e.g., see Theorem 14.1 in [59]) reveals

that unstable eigenvalue 1 is the uncontrollable mode; that is, the pair in (3.8) is not stabilizable. Hence,

there do not exist K1 and K2 such that Ac defined in (3.5) is Hurwitz. This counterexample to Remark 3.8

is obtained due to the fact that the constructed G1 violates Property 1.5 in [25]. In fact, J. Huang (personal

communication, June 9, 2018) recognizes the problem in Remark 3.8; hence, he adds Property 1.5 as a

condition to Lemma 1.2623 of [25].

In this paper, Definition 2.2.1 modifies the second property of Definition 1.22 given after (1.58) in

[25]. This modification guarantees that Property 1.5 in [25] automatically holds if Assumption 2.3.5 holds.

Based on the foregoing discussions, it is clear that Remark 2.4.4 is true.

The following two paragraphs adopt the notation and the terminology from [1]. Readers are

referred to (5), (6), (7), (8), (10), Definition 2, Lemma 2, Section II.B, and Section III in [1]. It is shown

in Section III that if the matrix equations in (8) have solutions X1i and X2i for i = 1, . . . ,N, then the ones

in (7) have solutions X1 = diag(X11, . . . ,X1N) and X2 = diag(X21, . . . ,X2N); that is, the matrix equations in

(6) have a solution X = [XT
1 XT

2 ]
T. Furthermore, it is claimed that if the three conditions24 listed in the

last paragraph of Section III hold, then the matrix equations in (8) have unique solutions X1i and X2i for

i = 1, . . . ,N. However, these conditions do not guarantee the unique solutions. For, consider A1 = 0, B1 = 1,

C1 = 1, D1 = 0, S = 0, R = 1, P1 = 1, F1 = 0, and G1 = 1. It can be easily checked that the listed conditions

are satisfied and Property 1.5 in [25] is not violated. Choose K1 = 0 and H1 = 0. From the first matrix

equation in (8), we get 1 = 0, which is a contradiction. We now point out the problem in the claim. First,

observe that the matrix equations in (8) can be equivalently written as the matrix equations given by (1.70)

and (1.71) in [25]. Then, by Lemma 1.27 in [25], one can note that the following condition is missed in the

claim: Ãi given after (10) is Hurwitz25 for i = 1, . . . ,N. It can be shown that this condition, together with the

assumption on S, ensures that zero matrices are the unique solutions to the off-block-diagonal matrix

23We also note that the proof of Lemma 1.26 in [25] is still valid even if Assumption 1.1 in [25] is removed from the
hypotheses of Lemma 1.26.

24In Section II.B, S is assumed to have no strictly stable modes.
25After the suggested modification above, Ki and Hi can always be chosen such that Ãi is Hurwitz under the listed conditions.
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equations in (7) by adding Gc
(
(Cc +DcKc)X1 +DcHcX2−Rc

)
to the left side of the second equation in (7)

that gives an equivalent form of (7) and applying the first part of Proposition A.2 in [25]. In conclusion,

if the assumption on S holds, the third condition in the list holds for i = 1, . . . ,N, and Ãi is Hurwitz for

i = 1, . . . ,N, then the matrix equations in (6) have a unique solution X .

According to Lemma 2, the problem in Definition 2 is solved if the assumption on S holds, Al

given after (5) is Hurwitz, and the matrix equations in (6) have a unique solution X . Although the approach

utilized during the derivation of the listed conditions does not take into account the assumption on Al , one

may wonder the answer of the following question: Let the listed conditions hold and Al be Hurwitz. Then,

can we conclude that Ãi is Hurwitz for i = 1, . . . ,N? The answer is no. That is, the missing condition cannot

be satisfied by assuming that the listed conditions hold and Al is Hurwitz. To clarify this point, consider the

system parameters of the agents, the system matrix of the exosystem, and the adjacency matrix of G∗

A1 =

−1 1

1 0

 , B1 =

1 0.5

0 0.25

 , C1 =

[
1 −0.5

]
, D1 = 0,

A2 =


0 1 0

0 0 1

0 0 0

 , B2 =


0

0

1

 , C2 =

[
1 0 0

]
, D2 = 0,

A3 = 1, B3 =−1, C3 = 1, D3 = 0, S = 0,

Q∗ =



1 0 0 0

0.5 0 0 0.5

0 0.5 0 0.5

0 0.5 0.5 0


.

Choose (Fi,Gi) = (0,1), i = 1,2,3. It can be easily checked that the listed conditions are satisfied and

Property 1.5 in [25] is not violated. One can also obtain W , which is required to construct Al , from Q∗.

Then, choose the remaining parameters of the controllers as follows

K1 =

 2.6752 9.6624

−10.6752 −24.6624

 , H1 =

−6.4

6.4

 ,
K2 = −

[
104.56 57.936 14.828

]
, H2 =−80, K3 = 0.8, H3 = 1.

With this setup, it can be verified that Ã3 is not Hurwitz even though Al is Hurwitz.
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Based on the previous example, the following question arises: Is the missing condition in [1]

necessary to ensure that the matrix equations given by (6) in [1] have a unique solution? In fact, this

question is the motivation behind the key lemma (i.e., Lemma 2.4.3) of this paper and the answer is no.

In contrast to Section III in [1], the approach in Lemma 2.4.3 does not decompose matrix equations,

which consist of the overall dynamics of the multiagent system, into matrix equations, which deal with

the dynamics of each agent separately; hence, the missing condition in [1] is not required in Lemma 2.4.3.

Furthermore, not only dynamic state feedback but also dynamic output feedback with local measurement

and dynamic output feedback effectively utilize Lemma 2.4.3 to solve the stated problem in Definition 2.3.1

(see Theorems 2.4.1, 2.4.3, and 2.4.4).

Since the proof of Theorem 1 and the statement of Theorem 4 in [39] use the approach in Section

III of [1], we believe that the discussion in this section will also be helpful for the readers of the results in

[39].

85



www.manaraa.com

Appendix B: On Theorem 2 in [1]

In this section, the notation and the terminology in [1] are adopted and readers are referred to (5),

(10), (15), and Theorem 2 in [1]. Now, consider the system parameters of the agent, the system matrix of

the exosystem, and the adjacency matrix of G∗ given by

A1 =


1 0 0

0 1 0

0 0 −1

 , B1 = I3, C1 =

1 0 0

0 1 0

 , D1 = 0, S = 0, Q∗ =

1 0

1 0

 .

Choose (F1,G1) = (0, I2) and

K1 =


−2 0 0

0 −2 0

0 0 2

 , H1 =


−1 0

0 −1

0 0

 .

Note that W = 1 from Q∗; hence, Al given after (5) is nothing but Ã1 given after (10). With this setup, one

can verify that T1(s) given before Theorem 2 is stable and the condition in (15) is automatically satisfied, but

Al is not Hurwitz. This counterexample is obtained because the realization of T1(s) is neither stabilizable

nor detectable. In fact, a loss of one of them is enough to find a counterexample.

The above setup also applies to Theorem 5 in [39] since it relies on Theorem 2 and its conditions

are satisfied. It should be noted that although Assumptions 1-4 in [39] and Property 1.5 in [25] are not listed

in the hypotheses of Theorem 5 in [39], this counterexample does not violate them.
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Appendix C: Proofs of Lemmas 4.2.3-4.2.5 and 4.3.2

Proof of Lemma 4.2.3. Since limt→∞ f (t) = h ∈ Rn, there exists a T ∈ R>0 such that ‖ f (t)−h‖2 <

1,∀t > T . Hence, the triangle inequality ‖ f (t)‖2 ≤ ‖ f (t)− h‖2 + ‖h‖2 yields ‖ f (t)‖2 < ‖h‖2 + 1,∀t > T ,

so f is bounded in (T,∞). Since [0,T ] is compact and f is piecewise continuous on [0,T ], f is bounded on

[0,T ] by Proposition 2.18 in [66]. Thus, the result follows. �

Proof of Lemma 4.2.4. Since limt→∞ g(t) = 0 and the range of g is a subset of
{

0,1
}

, there exists

a T ∈ R>0 such that g(t) = 0,∀t > T . This implies that (g f )(t) = 0,∀t > T and completes the proof of the

lemma. �

Proof of Lemma 4.2.5. Since the system in (4.7) is linear time-invariant and Ac is Hurwitz, (4.7) is

input-to-state stable (e.g., see the fourth part of Exercise 7.3.11 in [71], Chapter 4.9 in [55], and Chapter 4.5

in [66]). Since (4.7) is input-to-state stable and η(t) is piecewise continuous, limt→∞ η(t) = 0 implies that

limt→∞ ζ (t) = 0 for all ζ0 ∈ Rn (e.g., see the second part of Exercise 7.3.11 in [71], Exercise 4.58 in [55],

and the proof26 given after Definition 4.6 in [66]). �

Proof of Lemma 4.3.2. Under the hypotheses of Lemma 4.3.1, (4.22) and (4.23) have a unique

solution X̃i. Let ζ̃i0 ∈Rn and δi0 ∈Rhi be given. Define ζ̄i(t), ζ̃i(t)− X̃iδi(t). Then, using (4.9), (4.10) and

(4.22)-(4.25), we have

˙̄
ζi(t)=(A+BK1i)ζ̄i(t)+φi(t), ζ̄i(0) = ζ̄i0, t ≥ 0, (A.1)

β̃i(t)=Ciζ̄i(t). (A.2)

Since A+BK1i is Hurwitz and φi(t) is a convergent piecewise continuous function of t to 0, limt→∞ ζ̄i(t) = 0

by Lemma 4.2.5. It now follows from (A.2) that limt→∞ β̃i(t) = 0. �

26Although it is assumed in [66] that η(t) is continuous, bounded, and limt→∞ η(t) = 0, the proof in [66] is still valid when
η(t) is piecewise continuous and limt→∞ η(t) = 0 since the boundedness of η(t) immediately follows from Lemma 4.2.3.
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Appendix D: Errata

i) Page 10, Line 18: Change “root node” to “node”.

ii) Page 11, Line 6: Due to the given condition b) of Definition 2.2.1, sl = s1 for l = 2, . . . , p.

iii) Page 20, Remark 2.4.3 : For clarity, “limt→∞ A0ω(t)− ω̇(t) = A0 limt→∞ ω(t)− eA0tω0 +

limt→∞ A0eA0tω0− ω̇(t) = 0” should read “limt→∞(A0ω(t)− ω̇(t)) = A0
(

limt→∞(ω(t)− eA0tω0)
)
+

limt→∞(A0eA0tω0− ω̇(t)) = 0”.

iv) Page 34, Section 3.1.1: See Section 1.2 for better related literature.

v) Page 37, Line 10: Change “root node” to “node”.

vi) Page 37, Last Line: Due to the given condition ii) of Definition 3.2.1, hl = h1 for l = 2, . . . , p.

vii) Page 40, Line 6: Change “Generalizing the definition of the linear cooperative output regulation

problem in [34], the problem . . .” to “The problem . . .”.
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Appendix E: Copyright Permissions

The permission below is for the use of material in Chapter 2.

RightsLink

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 of 1 5/25/2020, 3:17 PM
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The permission below is for the use of material in Chapter 3.

RightsLink

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

1 of 1 5/25/2020, 2:47 PM
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