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Abstract

The overarching objective of this work is to propose solutions to quite a few distributed control
problems arising from networks of heterogeneous agents or the heterogeneous nature of multiagent systems.
Each problem with its solutions is concisely summarized below.

We consider the cooperative output regulation problem of heterogeneous linear multiagent systems
over fixed directed communication graphs. The purpose of this problem is to design a distributed control
law such that the overall closed-loop stability is ensured and the tracking error of each agent converges to
zero asymptotically for a class of reference inputs and disturbances generated by a so-called exosystem.
We investigate the solvability of the problem with internal model-based distributed control laws, namely
dynamic state feedback, dynamic output feedback with local measurement, and dynamic output feedback.
The approach is twofold: First, the overall closed-loop stability (i.e., global property) is assumed and it is
shown, under mild assumptions, that the problem is solved. Second, an agent-wise local sufficient condition
is derived to guarantee the global property under standard assumptions.

Then, we update the definition of the linear cooperative output regulation problem to allow not
only common output synchronization among agents but also an additional output synchronization among
a proper subset of the agents for a distributed dynamic state feedback control law that does not exchange
its state variables through a communication graph. Similar to the above-mentioned approach, its solvability
is investigated by making use of the internal model design from the linear output regulation theory and a
small-gain theorem for large-scale interconnected systems.

This dissertation also focuses on distributed control of linear multiagent systems with both global
and local objectives over fixed directed communication graphs. While the global objective is achieving
leaderless synchronization (i.e., consensus) or synchronization to a leader, local objectives for a subset of
agents are tasks determined by agent-specific dynamical systems around the synchronization mapping of
the global objective. Our main goal is to design a distributed control law such that each agent obeys the

global objective when it is not assigned the local task and performs its own local objective otherwise. To

v
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this end, we construct reference models for all agents via two existing synchronization results, introduce
two classes of distributed controllers, and formally define the considered problems. Then, they are solved
by utilizing the converging-input converging-state property for a class of linear systems and the feedforward

design approach from the linear output regulation theory.
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Chapter 1: Introduction

Over the last two decades, synchronization has been an immensely popular subject in the cooper-
ative control literature because of its vast array of applications ranging from formation of mobile robots to
surveillance with unmanned aerial vehicles (e.g., see [2-5] and references therein). From a control theory
viewpoint, the fundamental problem in synchronization of coupled dynamical systems is the derivation of
conditions that ensure state or output synchronization of the network of these agents [6, 7]. The main
theoretical difficulty in this problem arises from the lack of a central authority; that is, the controller of each
agent relies only on the information about the agent and its neighbors [8].

State synchronization in networks of identical systems (i.e., homogeneous multiagent systems) on
directed graphs has been well studied. In particular, networks of single-integrator (respectively, double-
integrator) agents are considered in [9-11] (respectively, [12, 13]). For general linear time-invariant dynami-
cal systems, the authors of [6, 14—18] have proposed different distributed controllers and explored conditions
to guarantee leaderless synchronization. Extensions to cooperative tracking (i.e., synchronization to a leader
or leader-following consensus) problems have been further investigated in [17, 19, 20].

Although the aforementioned literature addresses the synchronization of homogeneous linear mul-
tiagent systems in detail, heterogeneity resulting from nonidentical system dynamics is inevitable for many
real-world applications. For instance, coordination of autonomous vehicles of various sizes or kinds for
environment mapping leads to synchronization problems in heterogeneous multivehicle systems. Instead of
state synchronization, output synchronization among all agents is now expected since the state of every agent
does not necessarily have the same physical interpretation. In fact, state dimensions can be different [8, 21,
22]. The authors of [22, 23] have derived necessary and sufficient conditions for output synchronization
of networks of heterogeneous (in dynamics and dimension) linear time-invariant systems under directed
graphs. In addition, heterogeneity can stem from local objectives of each agent, which are around the global

objective of the multiagent system, even if individual systems are identical.
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This dissertation focuses on three facets of distributed control problems due to the heterogeneity

mentioned in the preceding paragraph. The following sections briefly describe them and our contributions.

1.1 Cooperative Output Regulation of Heterogeneous Linear Multiagent Systems

The output regulation (i.e., servomechanism) problem has been one of the central research topics in
control theory since the early 1970s. It mainly concentrates on controlling the output of an uncertain system
to achieve asymptotic tracking with disturbance rejection for a class of reference inputs and disturbances
generated by an exosystem, which is usually a known autonomous differential equation, while preserving
the closed-loop stability [24, 25]. For general linear time-invariant systems, this problem was solved by
[26-28], where the celebrated internal model principle of control theory was the significant outcome.

For large-scale systems such as power distribution networks and flexible manufacturing systems,
decentralized design of decentralized controller (i.e., design of local controllers based on models of only the
relevant parts of the system) is more efficient than its centralized counterpart in control theory. On the other
hand, many problems solved by control theory are subproblems in decentralized control theory [29, 30].
The connections between these theories have been studied in [31, 32] for the decentralized output regulation
problem of linear interconnected systems. It should be noted that each local controller is assumed to have
an access to its reference input.

The cooperative output regulation (i.e., distributed output regulation) problem, which can be re-
garded as an extension of the conventional output regulation problem to multiagent systems, has attracted
attention during the last decade (e.g., see [1, 33-48] and references therein). The objective of this problem is
to design a distributed control law that enables overall closed-loop stability and output synchronization of all
agents to the reference input in the presence of external disturbances. The reference input to be tracked and
external disturbances to be rejected by the agents are generated by an exosystem as in the output regulation
theory. However, the problem cannot be solved by a decentralized control scheme since the information of
the exosystem is available to only a proper subset of all agents [34—37].

The cooperative output regulation problem has been studied in [36, 37] for the networks of almost
identical linear agents on directed graphs. In contrast to the dynamics of the leader considered in [19, 20],
the exosystem can differ from the unforced dynamics of the agents; hence, for example, a target with
different dynamics and unmeasurable variables can be tracked by identical vehicles. Therefore, the problem

formulation of cooperative output regulation can also be seen as an extension of the leader-following
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consensus problem when the exosystem and agents are viewed as the leader and followers, respectively
[34-37].

The problem of cooperative output regulation of heterogeneous (in dynamics and dimension) linear
time-invariant multiagent systems over general fixed (i.e., static) directed communication graphs have been
recently investigated in [1, 34, 35, 38—40, 42-44] with numerous distributed controllers. Similar to the
output regulation theory, distributed control approaches used to solve this problem can be classified into two
approaches: Feedforward approach and internal model approach. The former is adopted by [34, 35, 38, 40,
42-44] and the feedforward gain of each agent relies on the solution of the regulator equations; hence, this
approach is known to be not robust to parameter uncertainties. On the other hand, the latter employed by
[1, 39] is robust with respect to small variations of the plant parameters. However, it cannot be applied when

the transmission zero condition does not hold.

1.2 Linear Cooperative Output Regulation with Primary and Secondary Synchronization Roles

In Section 1.1, the papers on the linear cooperative output regulation problem of heterogeneous
multiagent systems over general fixed directed communication graphs are classified according to the output
regulation theory. The heterogeneity in dimensions of the regulated outputs is a desired feature if the agents
are expected to track different dimensional reference signals. Now, we group the papers according to the
regulated output dimensions of the agents. While they are allowed to be different in [34, 35, 40, 43], the
authors of [1, 38, 39, 42, 44] assume that the dimensions are the same and even the output matrix of the
exosystem for each agent is identical. Besides using the feedforward approach, the controllers in [34, 35,
40, 43] all have distributed observers of the exosystem that exchange information about their states over the
communication graph. The proposed solutions in [1, 38, 39, 42], however, do not exchange information
about states of the controllers. Instead, they utilize relative output information of neighboring agents.

When controllers are not allowed to exchange their state variables, we seek output synchronization
among all agents in [1, 38, 39, 42], but is it the only possible synchronization in the network? To see this,
consider a heterogeneous multiagent system that is not too “heterogeneous”; that is, some of the agents
have similar dynamics. A simple example is a network of aerial and ground robots. Even if an exosystem
generates a reference input consisting of positions in the x, y, and z directions, altitude synchronization of
all robots cannot be achieved except trivial cases. On the contrary, positions in the x and y directions can

be synchronized among all agents. Basically, the regulated output of each agent in this case is the common
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output of the exosystem and all the agents. In addition to the common output synchronization, which shall
be called the primary synchronization role of the multiagent system, we can seek synchronization of all
aerial robots in the z direction. We shall refer to the additional synchronization roles like the one in the
example as the secondary synchronization roles of the multiagent system.

It should be noted that the problem formulation of [34, 35, 40, 43] inherently includes the primary
and secondary synchronization roles of the multiagent systems. However, for distributed controllers that do
not exchange their state variables through communication graphs, the linear cooperative output regulation

problem with primary and secondary synchronization roles has not been studied yet.

1.3 Control of Linear Multiagent Systems with Global and Local Objectives

With the system-theoretic advancements in distributed control of multiagent systems, groups of
agents are now able to utilize local information exchange for achieving a broad class of global objectives that
range from consensus to containment. Despite all the developments in the multiagent system literature, the
following fundamental question arises: How do some of the agents forming the multiagent system perform
their own local objectives, which are defined with respect to the global objective of the multiagent system,
without deteriorating the overall multiagent system’s global objective?

In fact, this question has been recently raised in [49] by the authors and system-theoretically ad-
dressed in [49] by providing five different distributed controllers (i.e., protocols) with comparable advan-
tages (see Tables I and II in [49]) for single-integrator agent dynamics when the global objective is leaderless
consensus. In [50], these controllers are slightly modified to achieve the leader-follower consensus as a
global objective. Furthermore, several experiments are conducted on a team of ground mobile robots with
these protocols. This experimental evaluation has shown that the third and fifth distributed controllers in

[49] and [50] outperform the other three for both leaderless and leader-follower consensus.

1.4 Contributions

In Chapter 2, we study the linear cooperative output regulation problem with the internal model
approach. Thus, our study is relevant to the studies in [1, 39], where they have proposed a distributed
dynamic state feedback control law incorporating a p-copy internal model of the system matrix of the
exosystem. Moreover, [39] extends the results in [1] to an output feedback control under an output feedback

stabilizability condition. Our contributions to this problem are as follows:
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* A considerable number of flaws in the results of [1, 39] is illustrated by counterexamples and fixed.

* The problem definition is slightly modified to show that the approach can also be useful when the

exosystem is not known exactly in practical applications.

* We not only consider a distributed dynamic state feedback control law but also a distributed dynamic
output feedback control law with local measurement output, where the output feedback stabilizability
is not assumed, and a distributed dynamic output feedback control law, where agents have no access to
their own states or outputs. For each control law, the solvability of the problem is investigated in two
steps. First, a global property, which requires both the dynamics of every agent and the communication
graph, is assumed and it is proved, under mild assumptions, that the problem is solved. Second, an
agent-wise local sufficient condition, which paves the way for independent controller design for each

agent, is provided to ensure the global property under standard assumptions.

* The proof technique utilized in the first step does not decompose the matrix equations that are crucial
for the solvability of the problem, unlike the technique in [1, 39]. This helps us to weaken the

assumptions of the first step.

It is worth noting that the proposed distributed controllers also solve the robust cooperative output
regulation problem considered in [33, 37] for heterogeneous uncertain linear multiagent systems owing to
the incorporation of a p-copy internal model of the system matrix of the exosystem into the controllers.
Therefore, they are superior to the ones in [34, 35, 38, 40, 42-44], which use the feedforward approach,
in terms of handling the plant uncertainties. Furthermore, with the proposed distributed control laws, each
agent does not need the exchange of its controller’s state variables. Instead, it makes use of relative output
information between itself and its neighbors. Hence, the proposed controllers can be more practical than the
controllers in [34, 35, 40, 43] when the agents are equipped with the sensors measuring the relative output.

In Chapter 3, the definition of the linear cooperative output regulation problem is updated to allow
not only the primary synchronization role but also a secondary synchronization role for a distributed dynamic
state feedback control law that does not rely on the exchange of its state variables. Similar to Chapter 2, the
solvability of the updated problem is investigated by employing the internal model approach and a small-

gain theorem.
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In Chapter 4, we study distributed control problems for high-order linear time-invariant multia-
gent systems with both global and local objectives over fixed directed communication graphs. While the
considered global objective is to solve a typical leaderless synchronization or synchronization to a leader
problem, local objectives for a subset of agents are tasks determined by agent-specific dynamical systems
around the synchronization mapping of the global objective. Based on the existing synchronization results
of [6] and [19], we construct (distributed) reference model, which achieves the global objective, for each
agent. Building on the harmony of global and local objectives considered in [49] together with the third and
fifth protocols of [49] and [50] for single-integrator agent dynamics, we introduce two classes of distributed
controllers for high-order linear time-invariant agent dynamics and define the problems to be addressed. We

then solve them by utilizing the converging-input converging-state property for a class of linear systems and

the feedforward approach.
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Chapter 2: A Distributed Control Approach for Heterogeneous Linear Multiagent Systems!

This paper considers an internal model based distributed control approach to the cooperative output
regulation problem of heterogeneous linear time-invariant multiagent systems over fixed directed commu-
nication graph topologies. First, a new definition of the linear cooperative output regulation problem is
introduced in order to allow a broad class of functions to be tracked and rejected by a network of agents.
Second, the solvability of this problem with three distributed control laws, namely dynamic state feedback,
dynamic output feedback with local measurement, and dynamic output feedback, is investigated by first
considering a global condition and then providing an agent-wise local sufficient condition under standard

assumptions. Finally, two numerical examples are provided to illustrate the selected contributions of this

paper.

2.1 Introduction

Heterogeneous multiagent systems formed by networks of agents having different dynamics and
dimensions present a significantly broader class of multiagent systems than their heterogeneous and homo-
geneous counterparts that consist of networks of agents having different dynamics with the same dimension
and identical dynamics, respectively. Therefore, analysis and synthesis of distributed control approaches for
this class of multiagent systems that rely on local information exchange has been an attractive research topic
in the systems and control field over the last decade.

In particular, the cooperative output regulation problem of heterogeneous (in dynamics and dimen-
sion) linear time-invariant multiagent systems, where the output of all agents synchronize to the output of
the leader, over general fixed directed communication graph topologies have been recently investigated in
[1, 34, 35, 38, 39, 42, 43]. This problem can be regarded as the generalization of the linear output regulation
problem given in, for example, [25] to multiagent systems. As a consequence, distributed control approaches

to this regulation problem can be classified into two categories:

! This chapter is previously published in [51]. Permission is included in Appendix E.
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* The first category is predicated on feedforward design methodology, where the authors of [34, 35, 38,
42, 43] present contributions. In the presence of plant uncertainties, however, this methodology is
known to be not robust since the feedforward gain of each agent relies on the solution of the regulator

equations.

* The second category is predicated on internal model principle, where the authors of [1, 39] present
contributions. While this methodology is robust with respect to small variations of the plant parame-
ters as compared to feedforward design methodology, it cannot be applied when the transmission zero

condition does not hold.

The common denominator of these papers is that an exosystem, which has an unforced linear time-
invariant dynamics, generates both a reference trajectory and external disturbances to be tracked and rejected
by networks of agents. Specifically, the system matrix of the exosystem is explicitly used by controllers of
all agents in [34, 35, 38, 42] and a proper subset of agents in [43]; or each agent incorporates a p-copy

internal model of this matrix in its controller [1, 39].

2.1.1 Contributions

Considering applications of the distributed control approaches in [1, 34, 35, 38, 39, 42, 43], it
can be a challenge to precisely know the system matrix of the exosystem, even the dynamical structure
of the exosystem; especially, when an external leader interacts with the network of agents or a control
designer simply injects optimized trajectory commands to the network based on, for example, an online
path planning algorithm. In order to guarantee ultimately bounded tracking error in such cases, a new,
generalized definition for the cooperative output regulation problem is needed.

This paper focuses on heterogeneous (in dynamics and dimension) linear time-invariant multiagent
systems over general fixed directed communication graph topologies. First, we present the generalized
definition for the linear cooperative output regulation problem. Second, we investigate the solvability
of this problem for internal model based distributed dynamic state feedback, output feedback with local
measurement, and output feedback control laws. To this end, we not only consider global conditions but
also provide agent-wise local sufficient conditions under standard assumptions. Considering large-scale
applications of multiagent systems, the agent-wise local sufficient conditions are primarily important for

independent controller design of each agent (i.e., without depending on the dynamics of other agents).
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The system-theoretical approach presented in this paper? is relevant to the studies in [1, 39], where
they also focus on the linear cooperative output regulation problem with an internal model based distributed
dynamic state feedback control law. Specifically, [39] extends the approach in [1] to an output feedback
control under an output feedback stabilizability condition. In addition to the generalized definition of the
linear cooperative output regulation problem, the contribution of this paper differs from the studies in [1, 39]

based on the following points:

* First, we note that the theoretical contribution of this paper covers not only the dynamic state feedback
problem but also the dynamic output feedback problem with local measurement as well as the dynamic
output feedback problem. Unlike the results presented in [39], this paper does not assume the output
feedback stabilizability for the dynamic output feedback problem with local measurement. With
regard to the dynamic output feedback problem, the results of this paper does not require agents to

access their own states or outputs.

* To prove the existence of a unique solution to the matrix equations that are crucial for the solvability
of the problem, Section III in [1] (Theorem 4 in [39]) decomposes these matrix equations, which
consist of the overall dynamics of the multiagent system, into matrix equations, which deal with the
dynamics of each agent separately. In contrast, we do not decompose these matrix equations; see the
sixth paragraph of Appendix A for the advantage. In particular, Lemma 2.4.3 of this paper, which
is also applicable to dynamic output feedback cases, guarantees that these matrix equations have a

unique solution without requiring their decompositions.

* A considerable number of gaps in the related results of [1, 39] is illustrated by counterexamples in

Appendices A and B and fixed in Appendices A and B as well as in Section 2.4.1.

2.1.2  Organization

The rest of the paper is organized as follows. Section 2.2 presents the notation and the essential
mathematical preliminaries. Section 2.3 formulates the linear cooperative output regulation problem con-
sidered in this paper. The solvability of this problem is investigated in Section 2.4 and two illustrative

numerical examples are presented in Section 2.5. Finally, Section 2.6 concludes the paper.

2 Although they are not completely related, [52, 53] may be regarded as preliminary works of this paper.
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2.2 Mathematical Preliminaries

A standard notation is used in this paper. Specifically, R, R”, and R"*™ respectively denote the sets
of all real numbers, n x 1 real column vectors, and n x m real matrices’; 1,, and I, respectively denote the
n x 1 vector of all ones and the 7 x n identity matrix; and “£” denotes equality by definition. We write ()T
for the transpose and || - || for the induced two norm of a matrix; o (-) for the spectrum* and p(-) for the
spectral radius of a square matrix; (-)~! for the inverse of a nonsingular matrix; and ® for the Kronecker
product. We also write A < B for A € R"*", B € R if entries a;; < b;; for all ordered pairs (i, j). Finally,
diag(Aj,...,A,) is a block-diagonal matrix with matrix entries Aj,...,A, on its diagonal.

We now concisely state the graph theoretical notation used in this paper, which is based on [5].
In particular, consider a fixed (i.e., time-invariant) directed graph G = (V,&), where V = {v1 yern ,vN} isa
nonempty finite set of N nodes and £ C V x V is a set of edges. Each node in V corresponds to a follower
agent. There is an edge rooted at node v; and ended at v; (i.e., (v j,v,-) € &) if and only if v; receives
information from v;. A = [a;;] € RN*N denotes the adjacency matrix, which describes the graph structure;
that is, a;; > 0 < (v},v;) € € and a;; = 0 otherwise. Repeated edges and self loops are not allowed; that is,
a; =0, Vie N with N = {1, ... ,N}. The set of neighbors of node v; is denoted as N; = {j | (vj,vi) € 5}.
In-degree matrix is defined by D = diag(dy,...,dy) with d; = ¥ ;cy, a;j. A directed path from node v; to
node v; is a sequence of successive edges in the form {(vi,vp), (vp,vg),-..,(vs,v;)}. If v; = v, then the
directed path is called a loop. A directed graph is said to have a spanning tree if there is a root node such
that it has directed paths to all other nodes in the graph. A fixed augmented directed graph is defined as
G= (17,5), where V = {vo,vl, e ,vN} is the set of N 4 1 nodes, including leader node vy and all nodes in
V, and € = EUE' is the set of edges with £ consisting of some edges in the form of (vo,v;), i € N.

The concept of internal model introduced next slightly modifies Definition 1.22 and Remark 1.24

in [25].
Definition 2.2.1 Given any square matrix Ay, a triple of matrices (My,M>,M3) is said to incorporate a
p-copy internal model of the matrix Ay if

Sl SZ 1 S3 S4
M =T T, M,=T M3z =T , 2.1

0 G] GZ 0

3In this paper, all real matrices are defined over the field of complex numbers.
“We follow Definition 4.4.4 in [54].

10
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or

My =Gy, My =Gy, M3 =0, 2.2)

where Sy, | = 1,2,3,4, is any matrix with an appropriate dimension, T is any nonsingular matrix with an

appropriate dimension, the zero matrix in M3 has as many rows as those of G, and

G| =diag(Bi,...,By), G, =diag(oy,...,0,),

where for 1 = 1,...,p, B € R and o; € R* satisfy the following conditions:
a) The pair (B;, 0;) is controllable.

b) The minimal polynomial of Ay is equal to the characteristic polynomial of f;.

2.3 Problem Formulation

Consider a system of N (follower) agents with heterogeneous linear time-invariant dynamics subject
to external disturbances over a fixed directed communication graph topology G. The dynamics of agent

i € N is given by

Xi(l) = A,-xi(t)—l—Bl-u,-(t)—i—&-(t), )C,‘(O):)Cl‘()7 t>0,

yi(t) = C,'Xi(t) +Diui(t)’

with state x;(¢) € R"™, input u;(t) € R™, output y;(¢) € R”, and external disturbance 9;(t) = E5,0(t) € R™,
where §(¢) € R% is a solution to the unknown disturbance dynamics with an initial condition. In addition,
the reference trajectory to be tracked is denoted by yo(7) = Rro(t) € R”, where ro(f) € R% is a solution to
the unknown leader dynamics with an initial condition.

Let w(t) = [rE(z),8T(#)]" € RY be the solution of the unknown exosystem, where ¢ = g; + gs.
Instead of assuming that the exosystem has an unforced linear time-invariant dynamics with a known
system matrix (e.g., see [1, 34, 39]), we consider that the exosystem has an unknown dynamics. From this
perspective, the exosystem can represent any (e.g., linear or nonlinear) dynamics provided that its solution

is unique and satisfies the conditions given later in Assumptions 2.3.1 and 2.3.2.

11
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Define E; £ [0 E5] and R £ [R, 0]. Furthermore, let e;(t) £ y;(t) — yo(t) be the tracking error. We

can then write the dynamics of each agent and its tracking error as

Xl'(l) = A,')Cl‘(l‘) +B,'I/t,‘(l’) jLE,'(J)(l‘)7 xi(O) =Xj, t>0, 2.3)

ei(t) = Cixi(t)+Dl-ui(t)—Ra)(t). 2.4)

In this paper, the tracking error ¢;(¢) is available to a nonempty proper subset of agents®. In particular, if
node v; observes the leader node vy, then there exists an edge (vo,v;) with weighting gain k; > 0; otherwise
ki = 0. Each agent has also access to the relative output error; that is, y;(¢) —y;(¢) for all j € N;. Similar to

[39], the local virtual tracking error can be defined as

) 2 g [T anle) ~ye) +h0) ()] 5)

Now, we define three classes of distributed control laws based on additional available information

to each agent:

1) Dynamic State Feedback. If each agent has full access to its own state x;(¢), then the dynamic

state feedback control law is given by

ui(t) = Kuxi(t) + Kaizi(1), (2.6)

zi(t) = Guzi(t)+ Gaevi(t), zi(0)=zo, t>0, (2.7)

where z;(t) € R™i is the controller state and the quadruple (Ki;, K»;, Gy, Ga;) is specified in Section 2.4.1.

2) Dynamic Output Feedback with Local Measurement. If each agent has local measurement output

ymi(t) € RPi of the form
ymi(t) = Cuixi(t) +Dmini(t), (2.8)

then the dynamic output feedback control law with local measurement is given by

SIf all agents observe the leader, decentralized controllers can be designed for each agent even though the distributed
controllers proposed here are still applicable.

12
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ui(t) = K,-z,-(t), (2.9)

zi(t) = Myuzi(t) + Majeyi(t) + M3iymi(t), zi(0) =zio, t>0, (2.10)

where z;(¢) € R™ is the controller state and the quadruple (K;, My;, M»;, M3;) is specified in Section 2.4.2.

3) Dynamic Output Feedback. 1f each agent does not have additional information; that is, the local
virtual tracking error ey;(t) is the only available information to it, then the dynamic output feedback control

law is given by

ui(t) = Kiz(t), (2.11)

z(t) = Myzit) +Maeyi(t), z(0)=2zpo, >0, (2.12)

where z;(t) € R™ is the controller state and the triple (K;, My;,M>;) is specified in Section 2.4.3.

We now introduce the first and the second assumptions before defining the problem.

Assumption 2.3.1 Ay € R7%9 has no eigenvalues with negative real parts.

Assumption 2.3.2 There exists K > 0 such that

Ao (t) — @(t)]2 < K < oo, Vt>0,

where @(t) is a piecewise continuous function® of .

Assumption 2.3.1 is standard in linear output regulation theory (e.g., see Remark 1.3 in [25]).
Assumption 2.3.2 is required to show the ultimate boundedness of the tracking error and it automatically
holds if the exosystem has an unforced linear time-invariant dynamics with the system matrix Ag. Note that
these assumptions do not imply the exact knowledge of the exosystem. We refer to Remarks 2.4.2 and 2.4.3
for further discussions and Section 2.5 for illustrative examples on this point.

Based on the definition of the linear cooperative output regulation problem in [1, 34], the problem

considered in this paper is defined as follows.

5We follow the definition given in page 650 of [55].

13
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Definition 2.3.1 Given the system in (2.3) and (2.4) together with the exosystem, which satisfies Assump-
tions 2.3.1 and 2.3.2, and the fixed augmented directed graph G, find a distributed control law of the form
(2.6) and (2.7), or (2.9) and (2.10), or (2.11) and (2.12) such that:

a) The resulting closed-loop system matrix is Hurwitz.

D) The tracking error e;(t) is ultimately bounded with ultimate bound b for all initial conditions of
the closed-loop system and for all i € N'; that is, there exists b > 0 and for each initial condition of the
closed-loop system, there is T > 0 such that ||e;(t)||» < b, ¥Vt > T, Vi e N.

¢) Iflimy e Ag@ (1) — @ (t) = 0, then for all initial conditions of the closed-loop system lim;_,.. e;(t) =
0,VieN.

This paper makes the following additional assumptions to solve this problem.

Assumption 2.3.3 The fixed augmented directed graph G has a spanning tree with the root node being the

leader node.
Assumption 2.3.4 The pair (A;,B;) is stabilizable for all i € N.

Assumption 2.3.5 Forall A € 6(Ay),

Ai—Al, B
rank =ni+p, VieN.
Ci D;

Assumption 2.3.6 As in (2.2), the triple (G1;,G2;,0) incorporates a p-copy internal model of Ay for all
ieN.

Assumption 2.3.7 The pair (A;,Cy,;) is detectable for all i € N.

Assumption 2.3.8 The pair (A;,C;) is detectable for all i € N.

Assumption 2.3.3 is natural to solve the stated problem (e.g., see Remark 3.2 in [5]). Similar to
Assumption 2.3.1, Assumptions 2.3.4-2.3.8 are standard in linear output regulation theory (e.g., see Chapter
1 of [25]). We use Assumptions 2.3.1-2.3.6 for dynamic state feedback. To utilize some results from
dynamic state feedback in the absence of full state information, each agent requires the estimation of its own
state. For this purpose, Assumption 2.3.7 and Assumption 2.3.8 are included for dynamic output feedback

with local measurement and dynamic output feedback, respectively.

14

www.manaraa.com



2.4 Solvability of the Problem

For the three different distributed control laws introduced in Section 2.3, this section investigates
the solvability of the problem given in Definition 2.3.1. Specifically, the approach in this section is twofold.
First, the property a) of Definition 2.3.1 is assumed and it is shown, under mild conditions, that the properties
b) and c) of Definition 2.3.1 are satisfied. Second, an agent-wise local sufficient condition (i.e., distributed
criterion) is provided for the property a) of Definition 2.3.1 (i.e., the stability of the closed-loop system
matrix) under standard assumptions.

Before studying the solvability of the problem for each distributed control law, we now present
some definitions that are used throughout this section to express the closed-loop systems in compact forms,
some results related to the communication graph topology, and a key lemma about the solvability of matrix
equations, which play a crucial role on the solvability of the problem.

Define the following matrices: ® 2 diag(®;,...,Py), ®=A,B,C,D,E; ®, = diag(Pp,1,. .., Puy),
® =C,D; K; 2 diag(Ky1,...,Kiy), | = 1,2; Aga 2 Iy @ Ag, and R, 2 Iy @ R. Further, let x(t) £ [x?(t), el
xH(0)]T € R, where i = YN ny; e(t) = [eX(2),...,en(1)]T € RV, ey(t) = [el, (1), ...,ely(t)]T € RNP, and
w(t) £ Iy o) € RV,

Observing y;(t) —y;(t) = ei(t) —e;(t) and recalling d; = ¥ jcp, aij, (2.5) can be equivalently written

as
() = elt)— ¥ ae;(r 2.13)
evi(t) = ei(t)——— ) ajjej(t). .
Vi i di +ki = y*J
Let F 2 diag(ﬁ, . dNikN) and W 2 (Iy — FA)®1,. Here, it should be noted that d; + k; > 0, Vi € A’

by Assumption 2.3.3; hence, F is well-defined. From (2.13), we have

ev(t) = Wel(r). (2.14)

Similar to Lemma 3.3 in [5], we next present the following lemma for Iy — F.A.

Lemma 2.4.1 Under Assumption 2.3.3, Iy — F.A is nonsingular. In addition, all its eigenvalues have

positive real parts.

15
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Proof. Under Assumption 2.3.3, Iy — F A satisfies the conditions of the theorem in [56]. Thus, it is
nonsingular. Since the singularity is eliminated, all the eigenvalues of Iy — F.A have positive real parts by

the Gershgorin circle theorem (e.g., see Fact 4.10.17 in [54]). |

Remark 2.4.1 Since Iy — F A is nonsingular under Assumption 2.3.3, so is W by Proposition 7.1.7 in [54].
Then, it is clear from (2.14) that e;(t) is bounded for all i € N if and only if ey;(t) is bounded for all i € N';
lim, e e;() =0, Vi € N if and only if lim, . ey;(t) =0, Vi € N.

We now investigate the spectral radius of F.A.

Lemma 2.4.2 Under Assumption 2.3.3, p(FA) < 1.

Proof. By Lemma 2.4.1, all the eigenvalues of Iy — F.A have positive real parts under Assumption
2.3.3. This directly implies from Fact 6.2.1.4 in [57] that the leading principal minors of Iy — F.A are all
positive as Iy — F.A is a square matrix whose off-diagonal elements are all nonpositive. Since F.A is a
nonnegative square matrix and the leading principal minors of Iy — F.A are all positive, p(F.A) < 1 from
Lemma 6.2.1.8 in [57]. |

Finally, we introduce the key lemma that extends the field of application of Lemma 1.27 in [25]
to heterogeneous (in dynamics and dimension) linear time-invariant multiagent systems over general fixed

directed communication graph topologies.

Lemma 2.4.37 Let Assumptions 2.3.1 and 2.3.3 hold. Suppose the triple (M1, My, M3) incorporates an N p-

copy internal model of Apa. If

~ A

A B
MzWé—i—Mj,ém M, +M2Wl§ —I—M3ﬁm

is Hurwitz, where A, B, C’, C’m, D, and ﬁm are any matrices with appropriate dimensions, then the matrix

equations

XAy, = AX+BZ+E, (2.15)

ZAow = MZ+MW(CX +DZ+F)+M3(CoX +DinZ), (2.16)

TTo investigate the solvability of a matrix equation that is obtained for a different problem setting with the distributed
dynamic state feedback control law, the authors of [58] utilized the same logic in the proof of Lemma 2.4.3 (see Section 3.1 in

[58)).
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have unique solutions X and Z for any matrices E and F of appropriate dimensions. Furthermore, X and Z

satisfy

0 = CX+DZ+F. (2.17)

In other words, the conclusion is that the matrix equations

XCAOa - AcXc + Bc, (2 1 8)
0 = CX.+D, (2.19)
have a unique solution X., where
X E o A
Xc = 7Bc: . ;Cc:C D,Dc:F
Z MyWF

Proof. Note that (2.15) and (2.16) (respectively, (2.17)) can be equivalently written as (2.18)
(respectively, (2.19)). Note also that o(Ag,) = 6(Ap). Since Assumption 2.3.1 holds and A, is Hurwitz,
Apa and A have no eigenvalues in common. Thus, the Sylvester equation in (2.18) has a unique solution
X. = [XT Z"|T by the first part of Proposition A.2 in [25]. In addition, we show that X and Z also satisfy
(2.17). To this end, let ¥ 2 CX +DZ + F. Since the triple (My,M,,M3) incorporates an N p-copy internal
model of Ag,, it has the form given by (2.1) or (2.2). If it takes the form (2.1), let [éT éT]T £ 7-17, where
6 has as many rows as those of G;. Premultiplying (2.16) by T~! and using the foregoing definitions, we

obtain

0A0. = G10+G VY. (2.20)

Note that if the triple (M;,M,,M3) takes the form (2.2), (2.16) already satisfies (2.20), where =27 Let
y £ W#; then, (2.20) is in the form of (1.74) in [25]. Hence, ¥ = 0 by the proof of Lemma 1.27 in [25]. We
know from Remark 2.4.1 that VW is nonsingular under Assumption 2.3.3. As a consequence, ¥ = 0 implies

¥ = 0. This completes the proof of this lemma. |
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2.4.1 Dynamic State Feedback

Let z(t) = [z (t),...,25(t)]T € R™1, where 7i;, = YN | n,,, and G; = diag(Gyy,...,G), | = 1,2.
Inserting (2.6) into (2.3) and (2.4), and using the above definitions, (2.3), (2.7), and (2.4) can be compactly

written as

x(t) = (A+BK))x(t)+BKyz(t) + Ew,(t), x(0)=x9, t>0, (2.21)

2(t) = Giz(t) +Gaey (1), z2(0) =z9, t>0, (2.22)

e(t) = (C+DKy)x(t)+DKaz(r) — Raa(t). (2.23)

Next, insert (2.23) into (2.14) and replace the obtained expression with the one in (2.22). Define x4(1) £
[xT(t),z7(t)]T € R™ ™. Then, the closed-loop system of (2.3)-(2.7) becomes

Xg(t) = Agxg(t) +Bewa(t), x4(0)=xe0, >0, (2.24)

e(t) = Coxg(t)+Dgy(1), (2.25)

where

A+ BK; BK); E
Ag = 5 Bg = s
G,W(C+DK;) G;+GyWDK, —GrWR,
G = |:C-|—DK1 DK2:| , Dg = —R,.

Theorem 2.4.1 Let Assumptions 2.3.1-2.3.3 and 2.3.6 hold. If Ag is Hurwitz, then the distributed dynamic
state feedback control given by (2.6) and (2.7) solves the problem in Definition 2.3.1.

Proof. By the definition of Ag,, the minimal polynomials for Ao, and Ag are the same. Thus, the triple
(G1,G>,0) incorporates an Np-copy internal model of Ag, under Assumption 2.3.6. Let (M;,M,,M3) =
(G1,G»,0). Letalso A2 A+BK,,B2£BK,,C2C+DK{,Cn 20,D2DK>, D, 20, ELE,and F £ —R,.
Then, the quadruple (Ag,Bg,Cq,D,) takes the form of (Ac,Bc,Cc,D.) in Lemma 2.4.3. In addition, A, is

Hurwitz and Assumptions 2.3.1 and 2.3.3 hold. Hence, Lemma 2.4.3 is applicable and it implies that the
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matrix equations

XAgw = AgXq+Bg, (2.26)

0 = CeXy+Dy, (2.27)

have a unique solution X;. We also refer to Appendix A for additional discussions on the solvability of
(2.26) and (2.27).

Under Assumption 2.3.2,

Apa®,(t) — @,(1)||2 < V/NK, Vt > 0since || Ao @, (t)—@a(1)||5=N||Ao@(t)
— 0(1)||3. Let %(t) = xo(t) — Xg0,(t). Then, using the definition of %,(f) and (2.26) and (2.27), we can

rewrite (2.24) and (2.25) as

Xo(t) = AgXg(t) +Xg(A0aa(t) — @4(1)), Xg(0) =Xg0, >0, (2.28)

e(t) = CoXglt). (2.29)
Now, the solution of (2.28) can be written as
1
Rolt) = ¥/ %0 + / MK, (Agaon(T) — a(7))d.
0

Since Ag is Hurwitz, there exist ¢ > 0 and o > 0 such that llee!||r < ce=*, ¥t >0 (e.g., see Lecture 8.3 in

[59]). Owing to this bound and the bound on ||Ag,@,(f) — @,(t)]|2, we have the following inequality

[ (2)]]2 < ce™¥||%e0 |2 + VNx, Vt>0.

|| Xell2
o

Using the fact ||e;(r)||2 < ||le()]|2, Vi € N and observing |le(7)||2 < ||Cql|2]| % (?)]]2 from (2.29), we arrive
lei®)l2 < ce” || Cellal|%goll2 + 5/, V=0, VieN,

where b’ = ¢||Cq||2 | Xe|l2v/NKket ™. For a given € > 0, we have either ¢||Cy||2||%e0 |2 > € or ¢||Ce ||| %02 <

cHCgHszgon>

€. In the former case, it can be readily shown that ce™*||Cq |2 || %e0(|2 < €, Vt > T with T:a*11n< .

> 0. In the latter case, the foregoing inequality trivially holds for all # > 0. Thus, e;(¢) is ultimately bounded

with the ultimate bound b = ' + ¢ for all Xg0, which is also true for all xg0, and for all i € N.
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If limy e Ao (1) — (1) = 0, then lim;_,e Aga @4 (1) — @4 () = 0. Since A, is Hurwitz and the system
in (2.28) is linear time-invariant when Ag,@,(f) — @,(¢) is viewed as an input to the system, (2.28) is
input-to-state stable with respect to this piecewise continuous input (e.g., see Chapter 4.9 in [55]). Thus,
1imy o0 Apa @a (1) — @y (1) = 0 implies lim; ., X (1) = O for all % (e.g., see Exercise 4.58 in [55]). Finally, it

follows from (2.29) that for all xeo lim, . e;(t) =0, Vi e N. [ |

Remark 2.4.2 The ultimate bound b of the tracking error for each agent is associated with the bound
K in Assumption 2.3.2. Specifically, as Kk decreases (respectively, increases), b decreases (respectively,
increases). To elucidate the role of Assumptions 2.3.1 and 2.3.2 in practice, we consider the following
possible scenarios:

a) When the piecewise continuity and boundedness of @(t) are the only information that is available
to a control designer, the triple (0,1,,0) incorporating a p-copy internal model of Ag = 0 is quite natural;
hence, (2.7) becomes a distributed integrator. Moreover, Xq in b can be explicitly expressed in terms of Ag
and By; that is, Xy = —A; ' By by (2.26).

b) When the piecewise continuity and boundedness of ®(t), the boundedness of w(t), and some
frequencies in (t) are available to a control designer, the triple (G;,G;,0) incorporating a p-copy
internal model of Ao, which includes these frequencies and zero eigenvalues, is an alternative to the pure

distributed integrator.

Remark 2.4.3 As it is shown in Theorem 2.4.1, asymptotic synchronization is achieved when lim;_,. Ag®(t)
— @(t) = 0. We now provide sufficient conditions to check this condition as follows®. If one of the following
conditions holds

a) d(t) =Aow(t), ©(0)=away, t>0;

b) lim, e e axy — (t) = 0, where wy = ©(0), and Ape’ @y — @(t) is uniformly continuous on
[0,22),
then lim,_,. Ag®@(t) — @(t) = 0. Note that a) clearly implies b). From Barbalat’s lemma given by Lemma
8.2 in [60], b) implies that 1im, ., Age @y — (1) = 0. Thus, lim; .. Ag(t) — @ (t) = Aglim, e @(2) —
A @y +1imy 0 Age' oy — @(t) = 0. In general, asymptotic synchronization results in the literature (e.g.,
see [1, 34, 39]) are obtained under the condition a). It is clear that this paper covers all class of functions

generated under the condition a).

8If Ay = 0, one should read lim; . (r) = 0 in place of lim, .. Ag®(r) — @(t) = 0; hence, ®(r) = ®* (®* is finite) in place
of a), and lim; ;.. 0(¢) = ®* and &(¢) is uniformly continuous on [0,e0) in place of b).
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To obtain an agent-wise local sufficient condition assuring the property a) of Definition 2.3.1 under

some standard assumptions, let & (¢) £ [x] (¢),zF (¢)]T € R, p;(t) = lﬁ Yjen,aijej(t),

_ A; 0 _ B; 0
A £ l , Bi £ "L By ;
GG Gy GoD; —Gy;

||>

and C; = [C; 0]. Furthermore, consider (2.3), (2.7), (2.13), and (2.4) when ®(¢) = 0. We now have

&(t) = Ai&(t)+Buy(t) +Bupi(r), &(0)=&o, >0, (2.30)

e,-(t) = C_'ié,-(t)+D,-u,-(t). (2.31)

Next, define the matrices

A A+ BiKy; BiK>;
Afi == ’
G2(Ci+DiK1;) Gii+ GyuDiKo;
Ci £ |C+DiKy DiKsi|-

Using (2.6), (2.30) and (2.31) can be written as

&(t) = Ap&i(t)+Bawi(t), &(0)=E&o, >0, (2.32)

e,-(t) = Cfiéi(t). (2.33)

Let, in addition, ¥¢ £ diag(WPs1, ..., Piv), ¥ =A,B,C and (1) = [EL(7),...,EF (1)]T. Then, (2.32)

and (2.33) can be put into the compact form given by

E() = A(t)+Bi(FARL)W(), &(0)=&, >0, (2.34)

) = C&(1), (2.35)

where e(r) = w(t) = Z(t). Observe that the system in (2.34) and (2.35) takes the form of (12) in [1].
Therefore, one may think of resorting Theorem 2 in [1] at first sight. However, the statement of Theorem 2

in [1] is not correct as it is written; we refer to Appendix B for a counterexample.
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This paragraph uses the notation and the terminology from [1]. Readers are referred to (12),
Theorem 1, Theorem 2, and Lemma 8 in [1]. It should be noted that Theorem 2 relies on Theorem 1 and
this theorem is derived by means of Theorem 11.8 and Lemma 11.2 in [61]. According to the mentioned
results and Chapter 5.3, which is devoted to the notion of internal stability for the system of interest, in [61],
it is clear that the following condition should be added to the hypotheses of Theorem 1: Let the realization
of T(s) given by (12) be stabilizable and detectable. With this modification, not only the theoretical gap
in Theorem 1 but also the one in Theorem 2 is filled. However, a simple point in the proof of Theorem
2 still needs to be clarified. The spectral radius of T (j®) in the proof of Theorem 2 is upper bounded by
applying Lemma 8. Since Lemma 8 is applied, we infer that diag(||7; (j®)||,-.-.,|| Ty (jo)]|) is regarded as
a positive definite diagonal matrix, but its proof is not given. The foregoing diagonal matrix is necessarily
positive semidefinite; hence, we only question’ whether T;(s) = 0 for some i. Instead of investigating the

corresponding realizations, we extend Lemma 8 to positive semidefinite diagonal matrices as follows.

Lemma 2.4.4 Let Q € R"™" be a nonnegative matrix. If A € R"" is a positive semidefinite diagonal matrix,
then p(AQ) < p(A)p(Q).

Proof. Let A = diag(A4,...,A,) be positive semidefinite. If A = 0, the inequality holds trivially.
We therefore assume that there exists a A; > 0 for some i; hence, p(A) > 0. Let A £ diag(ll, ... ,in),
where A; = p(A) if A; = 0, A; = A; otherwise. By construction, A < A, p(A) = p(A), and A is a positive
definite diagonal matrix. Since A < A and Q is nonnegative, AQ < AQ. By the corollary in page 27 of [62],
p(AQ) < p(AQ). Applying Lemma 8 in [1] to AQ, we also have p(AQ) < p(A)p(Q). Since p(A) = p(A),
we establish the desired inequality. |

It is well known that the system in (2.34) and (2.35) is stabilizable and detectable if A¢ is Hurwitz.

Thus, the new condition is satisfied if Ag; is Hurwitz for alli € NV.

Remark 2.4.4 Assumptions 2.3.4-2.3.6 ensure the stabilizability of the pair (A;, B;) for all i € N by Lemma
1.26 in [25]. Therefore, Ky; and K»; can always be chosen such that Ay; is Hurwitz for all i € N.
Let g5i(s) = Cyi(sI — Ag;) ™' B;. We now state the following theorem for the dynamic state feedback

case.

9Considering Kalman decomposition (e.g., see Theorem 16.3 in [59]), one can easily construct a linear time-invariant system
with Hurwitz system matrix, nonzero input and output matrices, and zero direct feedthrough matrix such that its transfer matrix is
Zero.
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Theorem 2.4.2 Let Assumption 2.3.3 hold and Ag; be Hurwitz for all i € N. If

lgtille p(FA) <1, VieN, (2.36)

where ||gti]| is the Ho norm of gi(s), then Ag is Hurwitz.

Proof. It follows from Theorem 2 in [1] and the above discussion. [ |

Remark 2.4.5 The inequality given by (2.36) is an agent-wise local sufficient condition; that is, it paves
the way for independent controller design for each agent. For the connection between this condition and an
algebraic Riccati equation (respectively, linear matrix inequality), we refer to Lemma 9 in [1] (respectively,
Theorem 6 in [39]). Moreover, we know from Lemma 2.4.2 that p(F.A) < 1 under Assumption 2.3.3.
Therefore, we can restate Theorem 2.4.2 by replacing (2.36) with ||gi||« < 1, Vi € N. In this statement,
although the condition becomes more conservative, it is not only agent-wise local but also graph-wise local
except Assumption 2.3.3. Finally, it should be noted that if the graph G considered in Theorem 2.4.2 contains
no loop (i.e., acyclic), then the nodes in G can be relabelled such that i > j when (Vj, vi) € E. Thus, Ais
similar to a lower triangular matrix with zero diagonal entries, so is F.A. This implies that p(FA) =0;

hence, Theorem 2.4.2 does not require the condition given by (2.36) anymore. In terms of being agent-wise

and graph-wise local, this special case is consistent with the result in [33].

2.4.2  Dynamic Output Feedback with Local Measurement

Let z;(¢) = [£7(r),Z] (t)]T € R"=i, where %;(t) is the estimate of the state x;(¢), K; = [K1; Kai], and

1

(2.9) have the form given by
u,-(t) = Kli)ei(t) +K2[Z[(I). (237)
To estimate the state x;(7), the following local Luenberger observer is employed

)’C'\,‘(l) = A,‘xAi(l‘) —i—Biui(t) + H; (ymi(t) —Cmifi(l) —Dmiui(t)), 55,(0) = 55,'0, t> 0, (238)
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where H; is the observer gain matrix. Using (2.37), we can write (2.38) as

%i(t) = (Ai+BiKii— Hi(Ci + DiK1:) ) £i(t) + Hiymi(t) + (B — HiDimi) K2iZi(1),

£i(0) =%, t>0. (2.39)
Let also Z;(t) evolve according to the dynamics given by
() = Guzi(t) +Gaeyi(t), Zi(0)=Zo, t>0. (2.40)

By (2.39) and (2.40), one can define the triple (M,;, M>;, M3;) in (2.10) as

Mo A Ai+ BiKyi — Hi(Comi + DmiK1;)  (Bi — HiDmi) Kai
i = )
0 Gii
0 H;
My £ , M3 £ : (2.41)
G 0

Using (2.8) and (2.37), (2.38) can be rewritten as

A

xi(t) = HiCnixi(t) + (Ai+ BiKi; — HiCini)%i(t) + BiK2Zi(t), £i(0) = %i0, t>0. (2.42)

Next, define £(¢) £ [£](¢),...,.550)|T, z2(t) £ [z1 (¢),...,Z2%(t)]T, and H £ diag(H,,...,Hy). Insert-
ing (2.37) into (2.3) and (2.4), using (2.42), (2.40), and the above definitions, (2.3), (2.10), and (2.4) can be

compactly written as

x(t) = Ax(t)+BKiX(t) + BKyZ(t) + Em,(t), x(0) =x09, >0, (2.43)
£(t) = HCpx(t)+(A+BK| —HCp)%(t)+BK>z(t), £(0) =%y, >0, (2.44)
2(t) = Giz(t)+ Gaey(1), 7(0) =2, >0, (2.45)
e(t) = Cx(t)+ DK x(t) + DKyZ(t) — Rym,(1). (2.46)

Now, insert (2.46) into (2.14) and replace the obtained expression with the one in (2.45). Let 1n(¢) £

XT(),£7(1),z7(¢)]" € R"", where 7i,, = Y n,,.. Then, the closed-loop system of (2.3)-(2.5) and (2.8)-
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(2.10) can be represented as

n(t) = Agn(t)+Bpwa(t), n(0)=mno, t>0, (2.47)
e(t) = Cyn(t)+Dywy(t), (2.48)
where
A BK; BK>
Ay = | HC, A+BK,—HCy, BK, ;

GLWC G2 WDK; G + G WDK,

E
By, = 0 , Cp = [C DK, DKz] , Dp = —R,.
—GyWR,

For the following result, we define Ay; L A;j—HiCpj and Ay 2 A — HC,,. By Assumption 2.3.7, H;

can always be chosen such that Ay; is Hurwitz for all i € V.

Theorem 2.4.3 Let Assumptions 2.3.1-2.3.3 and 2.3.6 hold. If Ag is Hurwitz and Ay; is Hurwitz for all
i € N, then the distributed dynamic output feedback control with local measurement given by (2.9) and
(2.10) solves the problem in Definition 2.3.1.

Proof. Let K 2 [K) K2, A2 A, B2BK,C2C,Cn 2 Cn, DEDK, Dy 2 DK, E2LE, F £ R,

y, A+BK| —H(Cn+DnK)) (B—HDy)K,
1 = )
0 Gy
0 H
M, & Mz & ) (2.49)
G, 0

Now, observe that the quadruple (Ay, By, Cy,Dy) takes the form of (Ac,Bc,Cc, D) in Lemma 2.4.3. Recall
from the proof of Theorem 2.4.1 that the triple (G, G>,0) incorporates an N p-copy internal model of Ao,
under Assumption 2.3.6. This clearly implies that the triple (M;,M,,M3) also incorporates an N p-copy
internal model of Ag,. It is given that Assumptions 2.3.1 and 2.3.3 hold. In order to apply Lemma 2.4.3, we

need to show that A, is Hurwitz under the conditions that A is Hurwitz and Ay; is Hurwitz for all i € N.
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To this end, the following elementary row and column operations are performed on Ay . First, subtract row
1 from row 2 and add column 2 to column 1. Second, interchange rows 2 and 3, and interchange columns 2

and 3. Thus, we obtain the matrix given by

A+ BK, BK; BK;
Ay £ |GoW(C+DKi) Gi+GWDK, G,WDK,
0 0 Al

Considering the performed elementary row and column operations, one can verify that A, is similar to An;
hence, they have the same eigenvalues. Since A;, is upper block triangular, 6(A,) = 6(Ag) U0 (An). Note
that Ay is Hurwitz as Ay; is Hurwitz for all i € V. It is also given that A, is Hurwitz. Thus, Ay is Hurwitz.

Then, the matrix equations

have a unique solution Xy, by Lemma 2.4.3.
Following similar steps to those in the proof of Theorem 2.4.1, it can be shown under Assumption
2.3.2 that ¢;(¢) is ultimately bounded with an ultimate bound for all 1y and for all i € N/. If, in addition,

lim; ;Ao (1) — @(t) = 0, then for all g lim, . e;(t) =0, Vi e N. [ |

Remark 2.4.6 Since the condition on Ay; is both agent-wise and graph-wise local, obtaining an agent-wise
local sufficient condition that ensures the property a) of Definition 2.3.1 boils down to finding an agent-wise
local sufficient condition, under standard assumptions, for the stability of Ay, which is already given in

Theorem 2.4.2.

2.4.3 Dynamic Output Feedback

Define z;(¢), K;, and u;(f) as in Section 2.4.2; that is, (2.11) has the form (2.37). Since ey;(¢) is the

only available information to each agent, the following distributed observer is considered instead of (2.39)
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to estimate the state x;(r)

)é,'(t) = (A,' + BiKy; — Li(Ci +DiK1i))fi(l) +L,‘€vi(l‘) + (Bi — LiD,')Kzl'Zi(t),

£(0) =0, t>0, (2.50)

where L; is the observer gain matrix. Let Z;(¢) satisfy the dynamics in (2.40). We can now define the pair
(My;,Mp;) in (2.12) by replacing the triple (H;,Cn;, Dmi) in M); (respectively, the zero matrix in My;) given
by (2.41) with (L;,C;, D;) (respectively, L;).

Define £(¢) and Z(¢) as in the previous subsection and L = diag(Ly,...,Ly). Inserting (2.37) into
(2.3) and (2.4), using (2.50), (2.40), and the above definitions, (2.3), (2.12), and (2.4) can be expressed by
(2.43),

£(t) = (A+BK,—L(C+DK)))%(t)+ (B—LD)K»z(t) + Ley(t), £0)=2%, >0, (251

(2.45), and (2.46). Next, insert (2.46) into (2.14) and replace the obtained expression not only with the one
in (2.45) but also with the one in (2.51). In addition, define 1(¢) as in Section 2.4.2. Then, the closed-loop
system of (2.3)-(2.5), (2.11), and (2.12) can be expressed by (2.47) and (2.48) if the second row of Ay is

replaced with

LWC A+ BK; *L(C‘i’DKl — WDKl) (B *LDﬁLLWD)Kz

and the second row of By, is replaced with —LVWR,.

Theorem 2.4.4 Let Assumptions 2.3.1-2.3.3 and 2.3.6 hold. If the resulting Ay is Hurwitz, then the dis-
tributed dynamic output feedback control given by (2.11) and (2.12) solves the problem in Definition 2.3.1.

Proof. Define K, A, B, é, D, E, and F as in the proof of Theorem 2.4.3. Let C’m £0, Dm £,
and M3 2 0. Define also the pair (M;,M>) by replacing the triple (H,Cp,, D) in M (respectively, the zero
matrix in M,) given by (2.49) with (L,C,D) (respectively, L). Then, observe that the resulting quadruple
(Ay,By,Cy,Dy) takes the form of (A¢,B.,Cc,D.) in Lemma 2.4.3. By the same argument in the proof

of Theorem 2.4.3, the resulting triple (M, M,,M3) incorporates an Np-copy internal model of Ag, under
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Assumption 2.3.6. Since, in addition, Assumptions 2.3.1-2.3.3 hold and Ay, is Hurwitz, the rest of the proof
can be completed by following the steps given in the proof of Theorem 2.4.1. |

Now, our goal is to obtain an agent-wise local sufficient condition that assures the property a) of
Definition 2.3.1 under some standard assumptions. For this purpose, define y;(¢) as in Section 2.4.1 and let

Ci(t) = [xiT(f),)?,-T(t),ZiT(t)]T S R”i+n72i’

_ A; BiK; BiK»;
Avi = | LG Aj+BiKii— LG BiKy; ,
| GG G2iDiKii Gii+ GoDiKy;
i 0
Bri = | —L|,Ca% [Ci DiKy; DiKzi]~
| —Gi

Furthermore, consider (2.3), (2.12), (2.13), and (2.4) when ®(7) = 0. By inserting (2.11) into the considered

equations, we have

G(t) = ArG()+Brp(t), G(0)=Co, >0, (2.52)

€,‘(l) = CF,'C,'(Z‘). (2.53)

Remark 2.4.7 Let Ay; £ A; — L;C;. By performing the elementary row and column operations given in the
proof of Theorem 2.4.3 on Ag;, one can show that 6(Af;) = 6(Ag;) UG (AL;). Note that by Assumption 2.3.8,
L; can always be chosen such that Ay ; is Hurwitz for all i € N'. In conjunction with Remark 2.4.4, this shows
that under Assumptions 2.3.4-2.3.6 and Assumption 2.3.8, it is always possible to find Ky;, Ky;, and L; such
that Ag; is Hurwitz for alli € N.

Let gri(s) £ Cri(s] —AFi)’lBFi. For the dynamic output feedback case, we now state the following

theorem.

Theorem 2.4.5 Let Assumption 2.3.3 hold and Ag; be Hurwitz for alli € N. If

Igrillop(FA) <1, VieN, (2.54)

then the resulting Ay is Hurwitz.
Proof. 1t follows from Section 2.4.1 by comparing (2.52) and (2.53) with (2.32) and (2.33). |
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2.5 Illustrative Numerical Examples

To illustrate some results from the previous section, we provide two numerical examples with

different exosystems. In particular, the first (respectively, second) example presents the distributed dynamic

state (respectively, output) feedback control law. For both examples, we consider five agents with the

following system, input, output, and direct feedthrough matrices

-1 1 1
7Bi: 7Ci:|:1 0:|7Di:0'17i:174757
02 0 2
010 0 0
0 2 1|,Bi=1]1 0 7Ci:[1 0 0.4];Di:07i:2737

000 01

and the augmented graph G shown in Figure 2.1. With this setup, each agent satisfies Assumptions 2.3.4

and 2.3.8. It is also clear from Figure 2.1 that Assumption 2.3.3 holds. In the simulations, we set each

nonzero a;j to 1 and k; = 1,i = 1,2. Moreover, initial conditions for the agents are given by xjo = [1, 0.6]T,

x20 = [-0.5, 0, —0.2]T, x30 = [-0.2, —0.3, 0]T, x40 = [0.6, 0]T, x50 = [0, 0.5] and the controller states of

all agents are initialized at zero.

Figure 2.1: Augmented directed graph G.

2.5.1 Example 1

In this example, the disturbance 0(¢) and the trajectory of the leader ry(z) satisfy the following

dynamics
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0 0.01 0 0 0

56 = o o 0 [8®)+] o |, 80 =]|-02], t>0,
0 0 —005 0.05 0
io(t) = —ra(t)+uo(t), ro(0)=0, >0,

respectively, where

0.1z, 0 <t < 100,
uo(t) = { 0.1f — 2sin(0.17)e001=100) 100 < ¢ < 200,

14+ sin(0.05( — 200)), t > 200.

By the solution of the disturbance dynamics with the given initial condition, §(¢) is bounded. Since uo(r)
is piecewise continuous and bounded, r((¢) is bounded by Example 4.25 in [55]; hence, 7y(t) is piecewise
continuous and bounded. Clearly, @(r) is piecewise continuous and bounded. Furthermore, the exosystem

affects the state of each agent and its tracking error through matrices

010 01 0 0 0 0 0
Es = Es, = , Eg, = ;
00 0 0 0 -0.1 -0.1 =02 O
0 0 1 0 -05 O
Es = |00 0|,Es=1]0 0 —1|,R=1
0 0 05 0 04 0

Suppose the piecewise continuity and boundedness of @(¢) are the only information that we know
about the exosystem. As it is suggested in the part a) of Remark 2.4.2, we then let Ag = 0 and (Gy;, Gy;) =
(0,1) for all i € N. Thus, Assumptions 2.3.1, 2.3.2, 2.3.5, and 2.3.6 hold. With the following controller

parameters

Kii = —[1.1960 0.9611}7Kzl~=—1-4142,i=1,4,5,
4.2328 5.3904 1.4038 1.2788

K = - , Koj = — ,i=2,3,
1.2604 1.4038 1.7115 1.3655
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Ayg; is Hurwitz for all i € A and the condition given by (2.36) is satisfied. Thus, A, is Hurwitz by Theorem

2.4.2. As Theorem 2.4.1 promises, ultimately bounded tracking error is observed in Figure 2.2.

Zoomed view

1.5
osfl 11 —=w)
051 7 —yl(t)
—a(t)

0 0
——ys(t)
0.5 —w(t)
0.5 o 1t 2 80 1 —ys5(t)

0 50 100 150 200 250 300
t (sec)

Figure 2.2: Output responses of the agents in Example 1.

2.5.2 Example 2

The disturbance and the trajectory of the leader satisfy

81t) = e §0)=1, >0,
0 05 te”'sin(t) -1
fO(t) = r()(t)+ ,r()(O): 7t207
-05 0 2e! 1
respectively. Moreover, Es, = [1 0", E5, = [0 10", E5, = [-1.500.3]", E5, = [02]", E5, =[0.2 — 0.2]T,
and R, = [10].
Suppose the unforced parts of the given dynamics are available to a control designer and the forcing

terms are known to be piecewise continuous and convergent to zero. Then, let

0 050
Ao = |-05 0 0],
0 0 O
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and

0 1 0 0
Gi = [0 0 1|,Gu=10|, VieN.
0 —025 0 1

Hence, Assumptions 2.3.1, 2.3.5, and 2.3.6 hold. In addition, lim; ,Ao®(z) — @(z) = 0. Note that As-
sumption 2.3.2 automatically holds since Ag(7) — @(¢) is piecewise continuous and convergent. With the

following controller parameters

T
Ky = —[5.1794 0.7932}714':[17 80.2} )

Ky = —[2 5.4458 10.3182}71'—174757

6.1916 5.7686 1.7835 T
K = — , Li = [—187 756 600] )
3.9299 1.7835 2.4282

0.4513 09173 3.3839
K2i = - ) i= 27 37

0.8924 2.2285 5.6377

Ag; is Hurwitz for all i € A/ and the condition given by (2.54) is satisfied. Thus, Ay is Hurwitz by Theorem
2.4.5. Furthermore, it is guaranteed by Theorem 2.4.4 that lim, ,.e;(t) = 0, Vi € N and this fact is

demonstrated in Figure 2.3.

2.6 Conclusion

In this paper, we studied the cooperative output regulation problem of heterogeneous linear time-
invariant multiagent systems over fixed directed communication graph topologies. Specifically, we intro-
duced a new definition of the linear cooperative output regulation problem (see Definition 2.3.1), which
allows a broad class of functions to be tracked and rejected by a network of agents, and focused on an
internal model based distributed control approach. For the three different distributed control laws (i.e.,
dynamic state feedback, dynamic output feedback with local measurement, and dynamic output feedback),
we investigated the solvability of this problem, which resulted in global and local sufficient conditions (see

Theorems 2.4.1-2.4.5). In addition, the provided two numerical examples illustrated the efficacy of our
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t (sec)

Figure 2.3: Output responses of the agents in Example 2.

contributions. Finally, we reported and addressed a considerable number of gaps in the existing related

literature (see Appendices A and B and Section 2.4.1).
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Chapter 3: Linear Cooperative Output Regulation with Heterogeneity in Synchronization Roles'”

This paper introduces a new definition of the linear cooperative output regulation problem in order
to allow the common output synchronization (regulation) together with an additional output synchronization
for a proper subset of all agents. The solvability of this problem with an internal model based distributed
dynamic state feedback control law is first investigated based on a global condition. An agent-wise local
sufficient condition is then presented under standard assumptions. A numerical example is finally provided

to illustrate the considered problem and the proposed approach in this paper.

3.1 Introduction

3.1.1 Related Literature and Motivation

Distributed control of heterogeneous multiagent systems, which are formed by networks of agents
having nonidentical dynamics and dimensions, has emerged as an attractive research direction in the last
decade. In particular, the common output synchronization (regulation) problem of a network of heteroge-
neous (in dynamics and dimension) linear time-invariant systems is investigated for both the cases without
and with a leader (see [1, 22, 34, 42, 43, 51, 64] and the references therein). Although the approaches
in these papers differ from each other, their common denominator is that the common output of all agents
synchronize to a common trajectory. Here, a common output of interest stands for the output variables that
have the same physical meaning for all agents; hence, we shall refer to the common output synchronization as
the primary synchronization role of multiagent systems. Thus, the existing literature addresses the primary
synchronization role of multiagent systems.

From a practical standpoint, however, some output variables of a proper subset of all agents can
share the same physical meaning in addition to a common output of interest. As a consequence, the following
question immediately arises: How do these specific agents achieve output synchronization not only for the

common output but also for the additional output variables they have in common without deteriorating the

10This chapter is previously presented in [63]. Permission is included in Appendix E.
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common output synchronization of the remaining agents? To the best of our knowledge, this question has
not been raised or reported in the existing heterogeneous multiagent systems literature. More importantly,
it yields multiple secondary synchronization roles of multiagent systems and related fundamental research
problems to be studied.

To elucidate one possible problem, consider, for example, a network of heterogeneous dynamical
systems which consists of a leader and two different groups of follower agents; see the graph G in Figure 3.1.
Specifically, the circle labeled with 0 denotes the leader, the circles labeled with 1,2,4, and 6 denote the first
group of follower agents, and the circles labeled with 3 and 5 denote the second group of follower agents.
Outputs of (follower) agents in the first (two dimensional) and the second (one dimensional) group are given
by [ya(t),y5(t)]T € R? and y,(t) € R, respectively. If the trajectory of the leader is given by [y,(¢),y,(t)],
the primary synchronization role of the multiagent system is the synchronization of y,(¢) for all agents to
va(t) of the leader. Yet, there is a secondary synchronization role of this multiagent system; namely, the

synchronization of yj () for the agents in the first group to y,(#) of the leader.

09/@6

Figure 3.1: The graphs given above and below are respectively denoted by G and Gs. In these graphs, the
circles denote the leader or the follower agents, and the arrows denote the directed edges corresponding to
the physical coupling or the flow of information.

For this problem, one potential remedy is to synchronize [y,(¢),y(¢)]" of the agents in the first
group with [y,(¢),y(¢)]" of the leader according to the graph Gs in Figure 3.1 and then synchronize y,(t) of
the agents in the second group with y,(#) of the agents in the first group by considering only the edges from

1to3,1t05,2t03,4to03,and6 to3 in the graph G. By means of this cascade approach, one can utilize the
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existing results in the literature. However, this approach disregards the edges from 3 to 1, 3to 6, and 5 to 2 in
the graph G; that is, the physical coupling or the flow of information y,(¢) in the graph G is partially ignored.
When this simplification is not possible, the problem becomes significantly more challenging since it cannot
be divided into two cascade synchronization problems due to the adverse effects of the ignored edges on the

synchronization of [y,(t),y,(t)]T for the agents in the first group with [y, (¢),y,(¢)]T of the leader.

3.1.2  Contribution and Organization

This paper focuses on heterogeneous linear time-invariant multiagent systems with a leader when
agents have heterogeneity in their synchronization roles. To this end, a new definition of the linear coopera-
tive output regulation problem is introduced in order to allow not only the primary output regulation but also
a secondary output regulation in distributed control of networks of these nonidentical agents. In particular,
the solvability of this problem with an internal model based distributed dynamic state feedback control law
is first investigated based on a global condition. An agent-wise local sufficient condition is then presented
under standard assumptions that paves the way for independent controller design for each agent.

The organization of the remainder of this paper is as follows. Section 3.2 presents the notation and
the essential mathematical preliminaries. Section 3.3 formulates the considered linear cooperative output
regulation problem in this paper. The solvability of this problem by first considering a global condition and
then presenting an agent-wise local sufficient condition is investigated in Section 3.4. Finally, an illustrative

numerical example is provided in Section 3.5 and concluding remarks are summarized in Section 3.6.

3.2 Mathematical Preliminaries

In this paper, R, R", and R"*™ respectively denote the sets of real numbers, n x 1 real column
vectors, and 7 X m real matrices'’; 1, and I, respectively denote the n x 1 vector of all ones and the n x n
identity matrix; “2” denotes equality by definition. In addition, we write (-)T for the transpose and || - ||»
for the induced two norm of a matrix; o(-) for the spectrum!2 and p(-) for the spectral radius of a square
matrix; (-)~! for the inverse of a nonsingular matrix; ® for the Kronecker product; and diag(Ay, ...,A,) for
a block-diagonal matrix with matrix entries Ay,...,A, on its diagonal. Finally, the space £, is defined as the

set of all piecewise continuous functions u : [0,00) — R™ such that ||u(z)||z, = ( f5 ||u(r)|3dr) 12 < o [55].

"This paper defines all real matrices over the field of complex numbers.
12We follow Definition 4.4.4 in [54].
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We now concisely state the graph theoretical notation used throughout this paper, which is based
on [5] and [4]. In particular, consider a fixed (i.e., time-invariant) directed graph G = (V,£), where V =
{vl Yoo ,vN} is a nonempty finite set of N nodes and £ C V x V is a set of edges. Each node in ) corresponds
to a follower agent. There is an edge rooted at node v; and ended at v; (i.e., (v j,vi) € &) if and only if v;
receives information from v;. A = [g;j] € RV*N denotes the adjacency matrix, which describes the graph
structure; that is, a;; > 0 < (v;,v;) € € and g;; = 0 otherwise. Repeated edges and self loops are not
allowed; that is, a;; = 0, Vi € N with N = {1,...,N}. The set of neighbors of node v; is denoted as N; =
{j €V|(vj,v) € E}. The in-degree matrix is defined by D = diag(d\, ..., dy) withd; = ¥ jcy, a;;. A directed
path from node v; to node v; is a sequence of successive edges in the form { (vi,v,), (vp,vq), ..., (v;,vj) }. A
directed graph is said to have a spanning tree if there is a root node such that it has directed paths to all other
nodes in the graph. A fixed augmented directed graph is defined as G = (V,€), where V = {vo, Viyeoos vN}
is the set of N + 1 nodes, including leader node v and all nodes in V, and € = £ U&’ is the set of edges with
&' consisting of some edges in the form of (vy,v;), i € N.

In addition, we consider a proper subset of nodes S C V such that S includes all follower agents that
have the secondary synchronization role. Without loss of generality, the following index set is considered
for S: Ns = {1,...,N’ } S induces a subgraph with respect to G and this induced subgraph is given
by Gs = (S,&s), where Es = {(v;,vi) € € | vj,vi € §}. Following the foregoing paragraph, we define
adjacency and in-degree matrices for Gs: As = [ay;] € RY "*N" denotes the corresponding adjacency matrix,
where asij > 0 < (v;,vi) € Es, asij = 0 otherwise, and Ds = diag(ds1,. . .,dsv) with dy; = ¥ jennng asij
denotes the corresponding in-degree matrix. Finally, S = {vo,vl, o ,vN/} including leader node vy and
all nodes in V that have the secondary synchronization role induces a subgraph with respect to G and this
induced subgraph is given by Gs = (S, Es), where g = {(vj,v,-) e&|vjvi€ 5’}.

Finally, the concept of the internal model, which is given in Definition 1.22 and Remark 1.24 of

[25], is tailored for the purpose of this paper.

Definition 3.2.1 Given any square matrix Ay, a pair of matrices (Gy,G3) is said to incorporate a p-copy

internal model of the matrix Ay if G1 and G, are given by

G| =diag(Bi,...,By), G, =diag(oy,...,0,), 3.1

where forl =1,....p, B € R'"*" and 6, € R" satisfy the following conditions:
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i) The pair (B;,0) is controllable.

ii) The minimal polynomial of Ay is equal to the characteristic polynomial of f;.

3.3 Problem Formulation

3.3.1 Heterogeneous Multiagent Systems Setup

We focus on a system of N (follower) agents with heterogeneous linear time-invariant dynamics
subject to disturbances over a fixed directed graph topology G, where the dynamics of agent i € N is given

by

X,‘(t) = Aixi(t) —i—Biui(t) +6i(l), )C,‘(O) = Xjp, t >0, (3.2)

yi(t) = Cixi(t) + Diu;(t), (3.3)

with state x;(z) € R"™, input u;(z) € R™, disturbance 6;(¢) € R™, and primary output y;(¢) € R”. In addition

to the primary output given by (3.3), every agent i € Ns has the following output equation

ysi(t) = Csixi(t) + Dsiui(1), (3.4)

where yg;(#) € RPs denotes the secondary output.

Consider now the exosystem given by

@) = A(r), o)=aw, =0, (3.5)
yo(t) = Ra(r), (3.6)
yso(t) = Reo(t), (3.7)
§(1) = Eo@), (3.8)

that generates trajectories of the leader to be tracked and disturbances to be rejected by agents, where
o(t) € RY is the exosystem state and y(r) € R? (respectively, ys(¢) € RP) is the trajectory of the leader
for the primary (respectively, secondary) synchronization role. It should be noted that this secondary

synchronization role can be the prioritized (i.e., selected) one among multiple secondary roles.
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Next, consider the primary tracking error and the secondary tracking error respectively given by

ei(t) 2 yi(t)—y(t), VieN, (3.9)

esi(t) = ysit) —ywo(t), Vi€ Ns. (3.10)

As a consequence, we can write the dynamics of each agent and their corresponding tracking errors as

)'Cl'(l‘) :A,-x,-(t)—kB,-ul-(t)—FEia)(t), x,-(O) =Xy, t>0, (3.11)
e,-(t) :C,-x,-(t)—l—Diui(t)—Ra)(t), (3.12)
esi(t) = Cyixi(t)+Dsiui(t) —Rs0(t). (3.13)

If node v; observes the leader node vy, then there exists an edge (vo,v;) with weighting gain k; > 0,
otherwise k; = 0. Thus, every agent that observes the leader has access to the primary tracking error ¢;(¢). If,
in addition, it belongs to Ns, then it has access to the secondary tracking error e (7). Moreover, this paper
assumes that each agent i € A/ has access to its own state x;(¢) and the primary relative output error; that is,
yi(t) —y;(r) for all j € N;. Each agent i € Ns also has access to the secondary relative output error; that is,

ysi(t) —ysj(¢) for all j € N;N Ns. The primary local virtual tracking error for each agent i € \ is defined as

L

dij-ki ( Y aij(vi(t) = v;(1)) + ki (vi?) —yo(t)))- (3.14)

JEN;

eyi (l)

In addition, the secondary local virtual tracking error for each agent i € Ns can be defined as

N 1
dsi + ki

esvi(t)

( Z asij(ysi(f)—)’sj(f))~|—ki(ysi(f)—)7so(l‘)))~ (3.15)

JENINNs

Finally, we define the distributed dynamic state feedback control law based on the available infor-

mation to each agent as

{K],-xi(t)+K2iZi(t)+K3iZs,’(t), Vie ./\/3, (3.16a)

u;(t) =

K]ix,‘([)—i-KziZi(I), Vi GN\NS, (3.16b)
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zi(t) = Gzi(t) + Gaievi(t), zi(0) =z, t>0, VieN, (3.17)

Zi(t) = Grizsi(t) + Gaiesvi(t),  zsi(0) =z50, t >0, VieNs, (3.18)

where z;(¢) € R™ and z;(¢) € R™s are the controller states and the septuple (K1, Kai, K3;, G1i, Gai, Gii, Gai)

is specified in Section 3.4.

3.3.2 Considered Cooperative Output Regulation Problem

Generalizing the definition of the linear cooperative output regulation problem in [34], the problem

considered in this paper is now defined as follows.

Definition 3.3.1 Given the system in (3.5), (3.11)-(3.13), and the fixed augmented directed graphs G and
Gs, find a distributed control law of the form (3.16a)-(3.18) such that:

i) The resulting closed-loop system matrix is Hurwitz.
ii) For all wy; xjo, zio, i € Ny and zsi, i € Ns; limy_,eee;(t) =0, Vi € N and lim; e e5;(t) = 0, Vi € N.
To solve the problem defined above, this paper makes the following assumptions.
Assumption 3.3.1 Ag € RY*Y has no eigenvalues with negative real parts.

Assumption 3.3.2 The fixed augmented directed graph G has a spanning tree with the root node being the

leader node.

Assumption 3.3.3 The fixed augmented directed graph Gs has a spanning tree with the root node being the

leader node.
Assumption 3.3.4 The pair (A;,B;) is stabilizable for all i € N.

Assumption 3.3.5 Forall A € 6(Ay),

Ai—Al, B
rank G D; | =ni+p+ps, VieNs. (3.19)
Csi Dsi
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Assumption 3.3.6 Forall A € 6(Ay),

Ai— AL, B:
rank =ni+p, Vie N\Ns. (3.20)
G D,

Assumption 3.3.7 The pair (G;,Gy;) incorporates a p-copy internal model of Ao for all i € N.

Assumption 3.3.8 The pair (Gy;,Gy;) incorporates a ps-copy internal model of Ag for all i € N's.

3.4 Solvability of the Problem

In this section, we investigate the solvability of the problem given in Definition 3.3.1. Specifically,
our approach is twofold. First, the property i) of Definition 3.3.1 is assumed and it is shown, under mild
conditions, that this implies the property ii) of Definition 3.3.1. Second, an agent-wise local sufficient
condition (i.e., distributed criterion) is provided for the property i) of Definition 3.3.1 (i.e., the stability of
the closed-loop system matrix) under standard assumptions.

We begin with some definitions that are used in this section to express the closed-loop systems in
their equivalent compact forms. Let ® £ diag(®;,...,®y), ®=A,B,C,D,E; ¥, 2 diag(¥P1,...,Viv), ¥ =
K,G, I = 1,2; G; £ diag(Gyy,...,Gv), | = 1,2; K3 = diag(Ka1,....Kaw); ¢ = diag(¢r,...,¢0n), ¢ =
B,D; and W = diag(Y&1,..., W), ¥ = C,D. Furthermore, let x(t) = [xI(¢),...,x,(#)]T € R, z(t) £
[Z7(0),....zm (0)]T € R, z4(£) 2 [, (1), . .., 25 (1)]T € R, where i = Y my, 71, = YN gy 1o, = YN s
e(t) £ [ef(t),...,eN ()T € RVP ey (1) £ [el, (1),....etn()]T € RNP, es(2) £ [e](1),...,eL, (1)]" € RN'Ps,

es(t) 2 el [ (1),...,el \(1)]T € RVPs. Finally, let 0,(1) 2 1y @ 0(t) € R¥, Ag, £ Iy @ Ag, R, 2 Iy @R,

svl

and Ry, 2 Iy QRs.

Observing y;(t) —y;(t) = ei(t) —e;(t) and yg;(t) — ys;(t) = esi(t) —es(t), and recalling d; = ¥ je v, @i,

ieNandd; =Y JENINNs Gsijs 1 € Ns, the expressions given by (3.14) and (3.15) can be rewritten as

evi(t) = e(t) 7 +k, ,g'v ajje;(t (3.21)
1
esw-(t) = eSi(t)_d~—i—k- Z asijesj(t), (322)
St leNiﬂNs
respectively. Let F £ diag(ﬁ ’dN+kN> Fs = diag(dsll+,(1 7""dsN/erN/>’ WE (Iy—FA)®1,, and

Ws £ (Iy — FsAs) ® I, . Here, it should be noted that d; + k; > 0, Vi € N and dy; +k; > 0, Vi € N5 by
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Assumption 3.3.2 and Assumption 3.3.3, respectively; hence, F and Fgs are well-defined. From (3.21) and

(3.22), one can respectively write

ev(t) = Welt), (3.23)

ew(t) = Wses(t). (3.24)

Next, inserting (3.16a) and (3.16b) into (3.11) and (3.12), (3.16a) into (3.13), and using the above
definitions, one can compactly write (3.11), (3.17), (3.18), (3.12), and (3.13) as

%(t) = (A+BK)x(t) + BKxz(t) + BKsz5(t) + Emy(t), x(0)=xp, >0, (3.25)
2(t) = Giz(t) + Gaey (1), 2(0) =29, >0, (3.26)
2(t) = Gizs(t) + Gaesy (1), z5(0) = z50, >0, (3.27)
e(t) = (C+ DKy)x(t) + DKyz(t) + DK3zs(t) — Ry, (t), (3.28)
es(t) = (Cs+ Dy )x(t) + DsKaz(t) + DsKazs (1) — Rsa s (1), (3.29)

where B = [BT 0|, D = [DT 0], C; = [C; 0], Ds = [D; 0], and Ry, = [Rs, 0]. Now, insert (3.28) into (3.23)
(respectively, (3.29) into (3.24)) and replace the obtained expression with the one in (3.26) (respectively,
(3.27)). Define xq(r) 2 [x"(1),27 (1), 22 (1)]T € R™7 47 and ey 2 [eT(1), el (1)]T € RNP*N'Ps. The closed-

S

loop system given by (3.11)-(3.18) then becomes

Xg(t) = Agxg(t) +Bya(t), xg(0) =x40, t>0, (3.30)
eg(t) = Coxg(t) +Dgy(1), (3.31)
where
A+BK; BK> BK; E
Ag = GzW(C+DK1) G1+G2WDK, GzW[)K3 aBg: —GyWR, |
GyWs(CeHDsK1)  GoWsDyKy,  G1+GaWsDsKs —GyWsR,
C+DK, DK, DKj —R,
Cg - _ 7Dg
Cs+DsK] DsKQ DsK3 _Rsa
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The next lemma plays a crucial role on the solvability of the problem, which is presented in Theorem
3.4.1 by assuming the property i) of Definition 3.3.1. Due to the page limitation, the proof of the next lemma

is omitted.

Lemma 3.4.1 Let Assumptions 3.3.1-3.3.3, 3.3.7, and 3.3.8 hold. If A; is Hurwitz, then the matrix equations

XAoa = AgXg+Bg, (3.32)

0 = CeXg+Dy, (3.33)

have a unique solution X,.

Theorem 3.4.1 Let Assumptions 3.3.1-3.3.3, 3.3.7, and 3.3.8 hold. If Ag is Hurwitz, then the distributed
dynamic state feedback control given by (3.16a)-(3.18) solves the problem in Definition 3.3.1.

Proof. Under the given conditions, (3.32) and (3.33) have a unique solution X, by Lemma 3.4.1. It
now can be derived from Lemma 1.4 in [25] that for all ay; x;0, Zio, i € N; and zgio, i € Ns; lim;_ye eg (r)=0.
|

Next, we focus on deriving an agent-wise local sufficient condition that assures the property i) of

A

Definition 3.3.1 (i.e., Ag is Hurwitz) under some standard assumptions. For now, let &(¢) = [x](¢), 2} (1),

zg(0)]T € RY Mt Vi€ Nss &) £ [ (1), 2] (1)]T € R, Vi € N\ Nss wi(t) 2 g Ljen; aijle;(1) +
w;(t)), Vi€ N and pg(t) = mZJ'GNiQNS asij(es;(t) +ws;(t)), Vi € Ns. Here, w;(t) € R? and wy;(r) € RP*
are disturbances such that each agent i € A/ can have access to the disturbed primary relative output error
yi(t) —yj(t) —w;(r) for all j € N; instead of y;(r) —y;(r) and each agent i € N5 can have access to the
disturbed secondary relative output error y;(¢) — ys;(t) — ws;(¢) for all j € N; NN instead of yg; (1) — ys;(1).

Taking into account the disturbances w;(t) and wy;(¢), the primary and the secondary local virtual tracking

errors in (3.14) and (3.15) are respectively written as

evi(t) = eit) —p(t), (3.34)
ewit) = esi(t) — Wsi(t). (3.35)
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We now define the matrices for agent i € Ns as

Ai+BiKy; BiK>; BiKs3;
A £ | Gu(CHDiK1)  Git+GuDiKo; GuDiK3i |
_GZi(Csi+DsiK1i) GaiDsiKsi  G1i+GoiDsiKi
[ 0 0
By & |-Gyl Bsi®]| 0 |,Bu% |:Efi sti],
0 e
Ci = |C+DiKi DK DiKSi]7 Cri £ [Csi+DsiK1i DsiK>i  DsiKsi |

and the matrices for agent i € N\ Ns as

o Ai+BiK\; BiK>; Al 0
A = , Bti = )
G2(Ci+DiK1;) Gi1i+GuDiKo; —Gy;
C_'fi = CH-D,'KU DiKZi .

At this point, consider (3.11), (3.17), (3.18), (3.12), (3.13), (3.34), and (3.35) when @(¢) = 0. By inserting
(3.16a) and (3.16b) into the considered equations, one can write the dynamics of each agent and its tracking

error(s) respectively as

i(r) = Ap&i(t) + Bgfii(t), &i(0)=E&o, >0, (3.36)
ei(t) = Cfiéi(t), (337)
esi(t) = Cri&i(t), (3.38)

where fi;(¢) = [ul (¢), ul ()], Vi € Ns, u(t) = pi(t), Vi € N\ Ns.

Let, in addition, F; £ diag( Partition

1 1 A 1 1
d1+k1""’dN/+kN/) and F> = dlag(dN/+l+kN/+l""’dN+kN>.
Aas A=[AT AN", where A; € RNV and A; € RW-N)*N Define the following matrices: A £
diag(Aq1,...,Aw), Br = diag(Bq,...,Bwy), B = diag(Bysi,. .., Brw), Br = diag(Biwry1,- .., Bw), Gt =

] _ _ _ ) _ _ . _ l;’f(]:l.Al ®1 ) st(]:s.As X1 S)
diag(Cy1,...,Cv), Crs = diag(Cs1,- - -, Crsn), Crs = [Crs 0], Bp £ 3 g No'E=
Bi(Fa Ay @ 1) 0
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| Leté() 2 [ET (1), ... En(0)]T € RTA and w £ [wi (1), ,wh (£),w (£),...,wh (T)]T € RNPHV s,
Cfs
Then, (3.36)-(3.38) can be put into the compact form given by

E(t) = A& (t)+Bw(t), £(0)=&, t>0, (3.39)

eg(r) = CGiS(1), (3.40)

where Af = A + BiCy. By construction, it is clear that Ag is similar to Ay; hence, they have the same
eigenvalues.

By applying a version of the small gain theorem from Theorem 6.2.2.12 in [57], one can derive the
agent-wise local sufficient condition given by (3.43) for £, stability of the dynamics in (3.39) and (3.40).
To conclude from its input-output stability that A, is Hurwitz, the stabilizability and the detectability of the
system of interest must be ensured. It is easy to see that if A is Hurwitz, then the pair (Ay, By) is stabilizable
and the pair (Ay,Cy) is detectable. Therefore, the stabilizability and the detectability of the dynamics given

by (3.39) and (3.40) are guaranteed if Ag; is Hurwitz for all i € N.

Remark 3.4.1 For agent i € ./\/:5‘, let Gli = diag(Gl,-,Gl,-), [=1,2; Ki =S [Kli K>; K3,’],‘ and Y = [IIIIT ‘I/sj;]T’
v = C,D. Then, A;; = A; + B;K;, where

A; 0 B;

A= T |.B=|""
GrCi Gy, GaiD;
Note that the pair (Gy;, G;) incorporates a (p+ ps)-copy internal model of Ay under Assumptions 3.3.7 and
3.3.8. By Lemma 1.26 in [25], Assumptions 3.3.4, 3.3.5, 3.3.7, and 3.3.8 ensure the stabilizability of the
pair (A;, B;) for all i € Ns. Thus, K; can always be chosen such that Ag; is Hurwitz for all i € Ns. Similarly,
for agenti € N'\ N, let K; = [Ky; Kyj). Then, Ag; = A; + B;K;, where

_ A; 0 _ B;
Ai= , Bi =

GG Gy G2 D;

Assumptions 3.3.4, 3.3.6, and 3.3.7 guarantee the stabilizability of the pair (A;,B;) for all i € N'\ Ns by

Lemma 1.26 in [25]. Hence, it is always possible to find K; such that Ay; is Hurwitz for all i € N\ Ns.
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Let g;(s) = Ci(sI — Ag;) " 'By, Vi € N and gqi(s) = Cgsi(s] — A;) "' By, Vi € Ns. If we make Ay
Hurwitz for all i € N, we can then conclude from Corollary 5.2 in [55] that for all i € A, the system given
by (3.36) and (3.37) is L, stable with finite gain; and for all i € Ns, so is the system given by (3.36) and

(3.38). It follows from Theorem 5.4 in [55] that the corresponding £, gains of the systems are

Y = supl|lgi(jo)|2 <o, VieN, (3.41)
weR

%i = sup|lgsi(jo)|2 <o, VieNs. (3.42)
weR

Let Fl é dlag(’}/l IR ?’N’)’ FZ é diag(YN’-‘rl gy YN)’ F3 é dlag(%] P ’YSN’)’ r é dlag(rl 7r27r3)'
The next theorem presents an agent-wise local sufficient condition for the problem introduced in

Definition 3.3.1. Due to the page limitation, the proof of Theorem 3.4.2 is omitted.

Theorem 3.4.2 Let Assumptions 2 and 3 hold, and Ag; be Hurwitz for all i € N. If

p(Mp(Q) <1, (3.43)

then Ag is Hurwitz, where

FiA FsAs
Q - ]'-2./42 0
FiA FsAs

Remark 3.4.2 The inequality given by (3.43) is satisfied if and only if y;p(Q) < 1, Vi € N and ¥;ip(Q) < 1,
Vi € Ns. Hence, it paves the way for independent controller design for each agent. In addition, if there
were no secondary synchronization roles, the third row and the second column of Q would not be required
and the condition would become Vp(FA) < 1, Vi € N. This special case is consistent with the result in [1]

and [51].
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3.5 Illustrative Numerical Example

To illustrate the efficacy of our contributions documented in the previous section, consider six agents

with

0 21 0 2 0
Alz 7Bl: 9

0 00 1 0 -1

02 0 O 0 3 1
G=1100 0:|7Dl_ 0 1f,

0.1 1 —1
Al = b Bl = )
05 0 1
C =1 0:|, D;=-0.5, i=3,5.

0 1 0 0
00 0 0
Ap = ’
00 O 0.5
00 —-05 O

0.5 0 0 1 0 1 —-05 0
0 —-0.8 0.1 O 0 0 0 2
E| = ) Er = )
0 0 04 -1 -1 -0.3 0 0
—0.2 0 0 0 2 1 0 —1
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Ey4

E; =

1 1.0 O 0O 0 0 2
0 00 O 3 2 10
» Ee = ;
-2 0 1 -1 0 05 0O
0 0 0 1 0O 1 00
0o -2 0 1 1 -1 1 -1
7E5_ )
04 0 02 O -1 1 -1 1

and the augmented directed graphs G and Gs shown in Figure 3.1. In the simulations, we set each nonzero

a;j and ag; to 1 and k; = 100,7 = 1,2. Moreover, initial conditions for the exosystem and the agents are

given by ay = [0, 0.2, 1, —1]T, x;9 = [1, 0.6, 0, 0], xp0 = [-0.5, 0, —0.2, 0], x30 = [-0.1, 0], x40 =

[0, 0, 0.2, 0.1]F, x50 = [0, 0.1]T, x¢0 = [-0.5, 0, 0, —0.1]7, and the controller states of all agents are

initialized at zero. It should be noted that N5 = {1,2,4,6}!3.

With this setup, Assumptions 3.3.1-3.3.6 hold. In addition, with the following matrices

G =

01 0 0 0
00 1 0 0
’ Gy = s Vie N,
00 0 1 0
0 0 -025 0 1

and G\; = Gy;, G2i = Ga;, Vi € N5, Assumptions 3.3.7 and 3.3.8 are also satisfied. Finally, with the following

controller parameters

Ky =

0.2671 21.0962 —-4.7667 —9.9519
3.7818 —7.8813 2.3770  4.8829
0.3132 1.4882 3.2623 3.8043

4.5627 9.5427 12.6600

0.9497
—0.0300 —0.5954 0.2250 —5.5793
,VieNs,
0.1969 —0.1051 1.9180

0.0099

13This index set does not violate the results in the paper since any generality is not lost by re-enumerating the agents (see

Section 3.2).
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Kii = —[163.8941 199.5744],

K2i:—[0.0316 0.7889 —0.4712 5.4435],%6/\/\/\/5,

Ay; is Hurwitz for all i € NV and the condition given by (3.43) is satisfied. Thus, Ayg is Hurwitz by Theorem
34.2.

As is theoretically expected from Theorem 3.4.1, both the primary tracking error for all i € A/ and
the secondary tracking error for all i € Ns converge to zero. This fact is numerically illustrated in Figure

3.2
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Figure 3.2: The primary output responses of the agents in A/ and the secondary output responses of the
agents in Ns.

3.6 Conclusion

For contributing to the studies in multiagent systems, this paper introduced and addressed the
heterogeneity in synchronization roles problem for networks of nonidentical linear time-invariant agents.
Specifically, a new definition of the linear cooperative output regulation problem (Definition 3.3.1) was

given to allow both the primary output regulation and a secondary output regulation in distributed control of
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multiagent systems. For an internal model based distributed state feedback control law, we first investigated
the solvability of this problem based on a global condition (Theorem 3.4.1). We then provided an agent-
wise local sufficient condition (Theorem 3.4.2) that paves the way for independent controller design for each

agent. Future research will extend these results to multiple secondary synchronization roles of multiagent

systems.
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Chapter 4: Distributed Control of Linear Multiagent Systems with Global and Local Objectives'*

In this paper, we consider distributed control problems for high-order linear time-invariant mul-
tiagent systems with not only global but also local objectives over fixed directed communication graph
topologies. The former is either leaderless synchronization or synchronization to a leader. Local objectives
for a subset of agents, on the other hand, are tasks determined by agent-specific dynamical systems around
the global objective. First, we construct reference models for all agents via two existing synchronization
results, introduce two classes of distributed controllers, and define the considered problems. We then
solve them by utilizing the converging-input converging-state property for a class of linear systems and
the feedforward design methodology from the linear output regulation theory. Finally, numerical examples

are presented to demonstrate the problems and the theoretical results.

4.1 Introduction

With the system-theoretic advancements in distributed control of multiagent systems over the last
two decades, groups of agents are now able to utilize local information exchange for achieving a broad class
of global objectives that range from synchronization (i.e., consensus) to formation (e.g., see [2-5, 46] and
references therein). In particular, state synchronization in networks of identical linear systems on directed
graphs has been well studied: Single-integrator and double-integrator agent dynamics are considered in
[9-11] and [12, 13], respectively. For high-order linear time-invariant dynamical systems, the authors of
[6, 14-18] have proposed different distributed controllers and explored conditions to guarantee leaderless
synchronization. Extensions to leader-following consensus (i.e., synchronization to a leader) problems have
been further investigated in [17, 19, 20].

Despite all the developments in the multiagent system literature, the following fundamental question
arises: How do some of the agents forming the multiagent system perform their own local objectives, which

are defined with respect to the global objective of the multiagent system, without deteriorating the overall

14This chapter has been submitted to a journal for possible publication.
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multiagent system’s global objective? This question gives us another problem to address. To elucidate the
problem, consider a multiagent system over a fixed directed communication graph. Specifically, assume
that this system has been performing synchronization as a global objective and an operator wants to interact
with a subset of the agents, for example, to drive them to an environment for data collection or battery
charging purposes, or to change the frequency of the synchronization mapping for some state variables of
them. When the operator injects commands to these agents for the mentioned local objectives, they are
supposed to perform them and the remaining agents are expected to preserve the synchronization as if none
of the agents had local objectives. After the removal of the external commands, agents that were performing
their local objectives are also required to obey the synchronization.

The key points revealed by the specifications of the above scenario should be taken into account
when the problem is defined and distributed controllers are proposed to tackle it. In fact, the question given
in the second paragraph has been recently raised in [49] by the authors and system-theoretically addressed
in [49] by providing five different distributed controllers (i.e., protocols) with comparable advantages (see
Tables I and II in [49]) for single-integrator agent dynamics when the global objective is leaderless con-
sensus. In [50], these controllers are slightly modified to achieve the leader-follower consensus as a global
objective. Furthermore, several experiments are conducted on a team of ground mobile robots with these
protocols. This experimental evaluation has shown that the third and fifth distributed controllers in [49] and
[50] outperform the other three for both leaderless and leader-follower consensus.

This paper focuses on high-order linear time-invariant multiagent systems with both global and local
objectives, where the former is either leaderless synchronization or synchronization to a leader and the latter
is determined by agent-specific dynamics around the synchronization mapping of the former. Based on the
existing synchronization results of [6] and [19], we construct (distributed) reference model, which achieves
the global objective, for each agent. Inspired by the harmony of global and local objectives considered in
[49] together with the third and fifth protocols of [49] and [50], we introduce two classes of distributed
controllers and define the problems to have not only global but also local objectives for networks of linear
time-invariant dynamical systems. We then propose design approaches, which utilize the feedforward design
methodology from the linear output regulation theory to assign some agents local tasks, for distributed
controllers to solve the problems. Finally, numerical examples are provided to illustrate our contributions.

The rest of this paper is organized as follows. In Section 4.2, we provide the notation and pre-

liminary results. In Section 4.3, we system-theoretically state the problems. Section 4.4 contains the main
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results. Numerical examples are given in Section 4.5 and our concluding remarks are summarized in Section

4.6.

4.2 Preliminaries

4.2.1 Notation and Graph Theoretic Preliminaries

For a set S, the membership of the element s in S is denoted by s € S. Let S| and S, be sets. If S is
a subset of S», we denote this by §; C ;. The union and the intersection of S| and S, are denoted by S; US>
and S N S, respectively. The complement of S} in S, is denoted by S, \ S} and the empty set is denoted
by 0. Let R, R>, and R respectively denote the sets of all real numbers, nonnegative real numbers, and
positive real numbers. Let C be the set of all complex numbers. For A € C, let Re(1) denote the real part
of A. Let R” and R"*™ respectively denote the sets of all n x 1 real column vectors and n x m real matrices.
Let 1, and I, respectively denote the 1 x 1 vector of all ones and the 7 x n identity matrix; and “=” denote
equality by definition. We also write (-)T for the transpose of a matrix and || - ||, for the Euclidean norm of
a vector, and ® for the Kronecker product. Finally, diag(Aj,...,A,) is a block-diagonal matrix with matrix
entries Ay, ...,A, on its diagonal.

In this paper, we consider a fixed (i.e., time-invariant) directed graph G = (V,€), where V =
{vl Yoo ,vN} is a nonempty finite set of N nodes and £ C V x V is a set of edges. Each node in ) corresponds
to an agent. There is an edge rooted at node v; and ended at v;, (i.e., (v iy v;) € ), if and only if v; receives
information from v;. In addition, A = [g;;] € RV*N denotes the adjacency matrix of the graph G, where
aij € Rog if (vj,vi) € &, ajj = 0 otherwise. Self-loops are not allowed; that is, a; = 0, Vi € N with
N = {1,...,N}. The set of neighbors of node v; is denoted as N; = {j | (v;,vi) € £}. In-degree and
Laplacian matrices of the graph G are defined as D = diag(d},...,dy) withd; =} jcy,a;j and L =D — A,
respectively. Thus, £ has zero row sums (i.e., L1y = 0). A directed path from node v; to node v; is
a sequence of successive edges in the form (vi,vy), (vp,vg),..., (v, vj). A directed graph is said to have
a spanning tree if there is a node such that it has a directed path to every other node in the graph. A
fixed augmented directed graph is defined as G = (V,€), where V = {vo} UV is the set of N 4 1 nodes,
including the leader node vy and all nodes in V, and £ = £ U&’ is the set of edges with £ being a subset of

{(vo,vi) | iEN}.
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4.2.2  Synchronization of Linear Systems

This subsection briefly overviews the linear quadratic regulator-based synchronization of identical
linear time-invariant dynamical systems over general fixed directed communication graph topologies, where
leaderless synchronization and synchronization to a leader are investigated in [6] and [19], respectively.

Consider N agents with identical linear time-invariant dynamical systems
X,’(l‘) = Axi(t)—}—Bui(t), xi(O) =X, t=>0, “4.1)

where x;(¢) € R" is the state and ;(f) € R™ is the input of the agent .

Assumption 4.2.1 The pair (A,B) is stabilizable.
We state a well-known result of optimal control theory (e.g., see Theorem 3.4-2 of [65] together

with the discussion given after the theorem) in the following lemma.

Lemma 4.2.1 Let Q = Q' € R and R = RT € R™™ be positive definite matrices. Suppose Assumption

4.2.1 holds. Then, the following algebraic Riccati equation
ATP+PA+Q—PBR 'BTP=0 (4.2)

has a unique positive definite solution P = PT € R"*". Therefore, A — BK is Hurwitz, where K = R~'BTP.

We next restate the Lemma 1 in [6] as follows:

Lemma 4.2.2 Let A € C and let K = R™'BYP, where P is the positive definite solution to (4.2) under the

assumptions as in Lemma 4.2.1. If Re(A) > 0.5'5, then A — ABK is Hurwitz.

4.2.2.1 Leaderless Synchronization

It is assumed that each agent has access to the relative state information between itself and its

neighbors; that is, x;(t) — x;(t) for all j € N;. Then, consider the distributed controllers'® given by

M,’(l‘) =cK Z aij(xj(t) —xi(t)), 4.3)

JEN;

15 Although it is assumed in Lemma 1 of [6] that Re(A) > 1, its proof is still valid when Re(A) > 0.5.
16For every distributed controller considered in this paper, K is a feedback gain and c is a coupling gain as in (4.3).
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with a feedback gain K € R™" and a coupling gain ¢ € R-(. By inserting (4.3) into (4.1) and defining

x(t) £ [xI(t),...,x5(¢)]T € RN, the dynamics of all agents can be compactly written as
i(t) = (In®A—cLRBK)x(t), x(0)=xp, t>0. (4.4)

Now, we define the leaderless synchronization for the problem setup in [6].

Definition 4.2.1 The systems in (4.1) with the distributed controllers of the form (4.3) are said to be synchro-
nized if for all xo € RN", there is a continuous mapping x* of R> into R" such that lim; ., (x,-(t) —x* (t)) =0
forallie N.

The main result of [6] recalled in Theorem 4.2.1 shows that the feedback gain K obtained via Lemma
4.2.1 guarantees synchronization of the systems in (4.1) for any directed graph satisfying Assumption 4.2.2
provided that the coupling is strong enough, where the coupling gain c is dependent on the graph and it is

determined by Lemma 4.2.2.

Assumption 4.2.2 The fixed directed graph G with at least two nodes has a spanning tree.
Under Assumption 4.2.2, it is known that £ has exactly one zero eigenvalue and its other eigenvalues
have positive real parts (e.g., see Lemma 3.3 in [10]). Let A, (L) be a nonzero eigenvalue of £ closest to the

imaginary axis. Furthermore, let w; € RV satisfy WITE =0 and w;FIN =1

Theorem 4.2.1 Consider the systems in (4.1). Let K = R~'BTP, where P is the positive definite solution
to (4.2) under the assumptions as in Lemma 4.2.1. Let Assumption 4.2.2 hold. If ¢ > m, then the

distributed controllers in (4.3) guarantee that the systems in (4.1) are synchronized. In particular, x*(t) =

(w] ®e)xo.

4.2.2.2  Synchronization to a Leader

The dynamics of the leader node is given by
Ht) = Ar(t), r(0)=ro, 120, (4.5)

where r(t) € R" is the state and the tracking error (i.e., r(¢) — x;()) is available to a small subset of the

agents in V. Specifically, if node v; in V observes the leader node vy, then there exists an edge (vo,v;) with
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weighting gain s; > 0; otherwise s; = 0. Each agent has also access to the relative state information. Based

on the available information, every agent implements the following distributed controller!”

u;(t) :cK< Zai/ (xj(1) —xi(2)) +si(r(z) x,-(t))). (4.6)
JEN;
By inserting (4.6) into (4.1), recalling x(¢) from Section 4.2.2.1, and defining S £ diag(si,...,sy) and

ra(t) 2 1y ® r(t), the dynamics of all agents can be written as
x(t) = (I®A—c(L+8)@BK)x(t) + (c(L+8) ®@BK)ry(t), x(0)=xo, t>0.

Let us define the synchronization to the leader in (4.5) for the problem in [19].

Definition 4.2.2 The systems in (4.1) with the distributed controllers of the form (4.6) are said to synchro-

nize to the leader in (4.5) if for all xo € RN" and ry € R", limy_o (x;(t) — r(t)) =0 foralli € N

Assumption 4.2.3 The fixed augmented directed graph G has a spanning tree's.

Under Assumption 4.2.3, all the eigenvalues of £ 4 S have positive real parts (e.g., see Lemma 3.3
in [5]). Let ;(£L+ S) be an eigenvalue of £+ S closest to the imaginary axis. Now, Theorem 1 of [19]
is stated in Theorem 4.2.2 and it is a counterpart of Theorem 4.2.1 for the synchronization to the leader in

4.5).

Theorem 4.2.2 Consider the systems in (4.1) and (4.5). Let K 2 R™'BTP, where P is the positive definite

1

solution to (4.2) under the assumptions as in Lemma 4.2.1. Let Assumption 4.2.3 hold. If ¢ > eI (L53))’

then the distributed controllers in (4.6) guarantee that the systems in (4.1) synchronize to the leader in (4.5).

4.2.3 Results on Boundedness and Convergence

We next concisely present useful lemmas, which are proven in Appendix C for the sake of com-
pleteness, on boundedness and convergence of piecewise continuous functions, and the converging-input

converging-state property for a class of linear systems.

17For every distributed controller using the term s;(r(¢) — x;(¢)) in this paper, s; is a weighting gain and it has the same
definition as in Section 4.2.2.2.

18By definition of the fixed augmented directed graph given in Section 4.2.1, Assumption 4.2.3 holds if and only if the leader
node has a directed path to every other node in G.

56

www.manaraa.com



Lemma 4.2.3 Let f : R>o — R" be a piecewise continuous' function. Iflim; .. f(t) = h € R", then f is

bounded.
Lemma 4.2.4 Let f: R>o — R" be a continuous function. Let g : R>g — {0, 1} be a piecewise constant®®
Sunction. Iflim; . g(t) = 0, then lim;_,o(gf)(¢) =0, where (gf)(t) = g(t) f(2).
Consider now the dynamical system given by
C@) = AL@m+n(), 0)=&, >0, 4.7)

where { (1) € R" is the state and 1(r) € R” is the input, which is a piecewise continuous function of 7.

Lemma 4.2.5 Let A be Hurwitz. Iflim; .1 (t) = 0, then lim,_,.. {(t) = 0 for all § € R".

4.3 Problem Formulation

In this paper, we consider a system of N agents with identical dynamics given by (4.1) over a
fixed directed communication graph G. In addition, the multiagent system is subject to both global and
local objectives. Specifically, the former is either leaderless synchronization or synchronization to the
leader in (4.5) and the latter is associated with the tasks assigned to a subset of agents with respect to
the synchronization mapping of the global objective by means of agent-specific dynamics (see Definitions
4.3.1 and 4.3.2, and Remark 4.3.2).

To this end, let AV, (respectively, NV}y) denote the set of all agents that are (respectively, are not)
assigned the local tasks, where the roles of agents are fixed (i.e., A}, and N}y do not change in 7). Notice
that V" = N, UN}y and NV, NNy = 0. Now, without loss of generality, we assume the index sets as N}, =
{1,...,p} and Ny = {p+ 1,... ,N} throughout this paper.

A subset of state variables of each agent in N}, is selected through

yi(t) = Cixi(t), (4.3)

191n this paper, we follow the equivalent definitions of real vector-valued piecewise continuous functions given in page 650 of
[55] and Definition 2.32 of [66].
20Note that every piecewise constant function is piecewise continuous, but the converse is not true.
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where y;(t) € R", and the agent-specific dynamical system is given by

Si(t) = Ti§(r), &(0)=8p, >0, (4.9)

ot) = F&(), (4.10)

for each agent in A, to assign local tasks around the synchronization mapping of the global objective,
where &;(r) € R" is the state and @;(t) € R is the output. Let §(z) = [ (¢),...,6, (1)]" € R" and o(r) £
[ (2),...,0)(1)]" € R, where h = Y h; and [ = Y/, I, Moreover, let T' £ diag(T'y,...,[,) and F £

diag(Fi,...,Fy). Then, the following aggregated dynamics arises from (4.9) and (4.10)

8(1t) = T8(t), 80)=8&, t>0, (4.11)

o(t) = Fo(r). (4.12)

4.3.1 Leaderless Synchronization as a Global Objective

We now introduce two classes of distributed controllers and define the problem, where the global
objective is leaderless synchronization. While these controllers have the same goal (see Definition 4.3.1),
they differ from each other in some ways such as required types of information and assumptions behind
them, which will be highlighted in Remarks 4.3.1, 4.4.1, 4.4.3, and 4.4.4 later.

Based on Theorem 4.2.1, we consider the following reference model for each agent

Xr[(l) = Axr[(t) +cBK Z ajj (xrj(t) —)Crl'(l‘)), xr,-(O) = Xpjo, 1 > 0. (413)
JEN;
By forming x;(¢) £ [x] (¢),...,xL,(#)]T € RN", the dynamics of all reference models can be written as
X (1) =(IyQA—cLRBK)x:(t), x:(0)=xq0, t>0. (4.14)
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4.3.1.1 First Distributed Controllers

The first controllers®! are now given by (4.13) and

u;(t)=cK Z a;j (% (1) = xei (1)) + 1K (30 () —x:(2) ) + ki <K Z aij(x;(t) —xi(1)) +Hi9i(t)5,-(t)>, (4.15)
JEN; JENNN,
where H; € R™*"i is a feedforward gain and 6;(t) € {0, 1 } is a piecewise constant function of ¢ used to assign
the local task of the agent i; specifically, it is assigned (respectively, removed) if 6; is set to 1 (respectively,
0). Moreover, k; € R+ if i € N, k; = 0 otherwise and /j; € R~ if i € Ny, [;; = 0 otherwise. In (4.15), the
first summation assumes that every agent exchanges its controller’s state with its neighboring agents. By the
definition of k;, the terms multiplied by ; are only effective when the agent belongs to AV,. Thus, each agent
in V; has access to the relative state information between itself and its neighbors in N; \ V;, and the state of

its agent-specific dynamics. Likewise, the damping term x;;(r) — x;(¢) is only used by the agents in Ny .

4.3.1.2 Second Distributed Controllers

Consider the reference models in (4.13) and remove the second summation in the output equations

(4.15) of the first controllers and allow all agents in ' to use the damping term in (4.15) as

ui(t) :cKZaij (xrj(t) —xn-(t)) —|—lng(Xri(l)—xi(l‘)) +kiHi9i(l)5i(l), (4.16)

JEN;

where Ir; € Roq forall i € \V.

Remark 4.3.1 For the agents in Ny, the first and second controllers use the same types of information.
On the other hand, for the agents in N, there are some differences in the required types of information:
Unlike the first controllers, the second ones do not need the relative state measurement. Thus, they reduce
the amount of relative information required by the first controllers. However, to implement the second
controllers, every agent in N, must also be capable of measuring its own state since every controller utilizes
the damping term. Hence, the second controllers make use of more self-information than the first ones. In
swarm robotics, the first controllers can be preferred to the second ones since sensors measuring relative

states can decrease the measurement cost.

2l For every introduced distributed controller in this paper, H; is a feedforward gain, and k; and 6;(¢) have the same definition
as in the first controllers.
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4.3.1.3 Problem Definition

According to Definition 4.2.1, Theorem 4.2.1, and the harmony of the global and local objectives of
the multiagent system raised in [49], the problem considered in this paper for leaderless synchronization as

a global objective is defined as follows:

Definition 4.3.1 Given the systems in (4.1) with Assumption 4.2.1, the fixed directed graph G, which satisfies
Assumption 4.2.2, the sets ./\/'p and Ny, the output equations in (4.8), and the systems in (4.9) and (4.10), find
distributed controllers of the form (4.13) and (4.15) or (4.13) and (4.16) such that for all initial conditions

(i.e., xo € RN, x0 € RV, and & € RF ) of the closed-loop system, the following properties hold:
i) limy_e (x;(1) —x3(2)) = 0 for all i € Ny, where x(t) = (w] ® ' )xy,
ii) 1imy e (x;(£) — x5 (¢)) = 0 if limy—e 0;(¢) = O for any i € N,
iii) 1imy_se. (yi(t) — () + w,-(z))) = 0 if limy o0 6(t) = 1 for any i € Ny, where y¥(r) = Cix? (1),

Remark 4.3.2 A few notes regarding the properties given by Definition 4.3.1 are in order: The properties
i) and ii) say that the agents in Ny obey the global objective of the multiagent system and any agent in N,
obeys the global objective after the removal of its local objective, respectively. In addition, the property
iii) specifies the local objective of any agent in Ny, with respect to the global objective of the multiagent
system. Notice that the global objective is independent of the local objectives of the agents in N, (i.e.,
x:(t) does not depend on the agent-specific dynamics given by (4.9) and (4.10)). This feature makes the
problem in Definition 4.3.1 completely different from the formation control problem studied in [67] and
[68]. Specifically, the formation reference function is directly affected by the formation in [67] and [68]
(e.g., see Definition 1, Theorem 2, and Remark 7 in [67]). Therefore, even if we take C; = I, for all i € N,
the reference formation function and the formation cannot be regarded as the global objective and the local

objective of the multiagent system, respectively.

Remark 4.3.3 The mapping x;(t) of the global objective is dependent on the graph topology G, the system
matrix A of each agent, and the initial values xy of the reference models. Therefore, xy can be used to
modify** x:(t) although it cannot be specified arbitrarily. If one sets xxo = xo, the map x(t) becomes the

original synchronization mapping x*(t) given in Theorem 4.2.1.

22Note that ¢ is nonsingular for every ¢ € R> and recall that w; is an eigenvector of LT, Thus, wlT ® e has full row rank for
every 1 € Roq. Fix t* € R-q. Then, for every x; € R", there exists an x,9 € RV such that x; = (W] ® €' )x;.
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4.3.2 Synchronization to a Leader as a Global Objective

Next, the term s;(r(#) — x;(t)) is incorporated into the controllers of Section 4.3.1 to make them
suitable for synchronization to the leader in (4.5) as a global objective.

First, based on Theorem 4.2.2, (4.13) is adjusted as follows

Xri(l) = Axr,-(t) —l—cBK(Za,-j(xrj(t) —xr,-(t))—i—si(r(t) —xr,-(t))>, xr,-(O) = Xno, t>0. “4.17)

JEN;

4.3.2.1 First Distributed Controllers

Accordingly, instead of (4.15), we have the following output equations for the controllers

ui(t) = cK (Zaij(xr.i(f)—xri(f))ﬂi(r(f)—xri(f))> + LK (x4 (1) = xi(1))

JEN;

+k; <K Z aij (Xj(l) —x,-(t)) +Hi9,'<l)5i(f)>. (4.18)

JENAN,

4.3.2.2 Second Distributed Controllers

In place of (4.16), we consider

u,‘<l) = cK (Zaij(xrj(t)—xri(t))—i—si(r(t) —Xri(l>)> —l—lz,‘K(xr,‘(t)—x,‘(l)) +kiHi9i(l)5i<l). 4.19)

JEN;

4.3.2.3 Problem Definition
When the global objective of the multiagent system is synchronization to the leader in (4.5), the

next definition slightly modifies Definition 4.3.1 by taking Definition 4.2.2 into account.

Definition 4.3.2 Given the systems in (4.1) with Assumption 4.2.1, the system in (4.5), the fixed augmented
directed graph G, which satisfies Assumption 4.2.3, the sets J\/p and Ny, the output equations in (4.8), and
the systems in (4.9) and (4.10), find distributed controllers of the form (4.17) and (4.18) or (4.17) and (4.19)
such that for all initial conditions (i.e., xg € RM 1o € R, x0 € RV and & € R ) of the closed-loop system,

the following properties hold:

i) limy o (x;(¢) — r(t)) =0 for all i € Ny,
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i) limy e (xl-(t) — r(t)) =0 iflim; . 6;(r) = 0 for any i € N,
M)mmm@m%{ﬁ®+@@Dzoﬁmhm&@:1ﬁmwiQWWMMﬁ@:Qﬂm

Remark 4.3.4 In general, the set of formation vectors for an agent in the time-varying formation tracking
problem with one leader, which is investigated in Corollary 1 of [69], differs from the local objectives given
in Definition 4.3.2. Essentially, the formation vector is allocated to each state variable of the agent, while
the local objective can be associated with a proper subset of its state variables. It is also worth mentioning
that global and local generalized disturbances introduced in [40] can be interpreted as global and local
objectives in the context of leader-following consensus problems. If the distributed regulator in Theorem
3 of [40] is adjusted in such a way that the properties of Definition 4.3.2 are satisfied, then an alternative

solution to the problem can be obtained.

4.3.3 Assumptions and Lemmas from Output Regulation Theory

To satisfy the property iii) of Definitions 4.3.1 and 4.3.2, this paper makes the additional standard

assumptions from the linear output regulation theory (e.g., see Chapter 1 of [25]) as follows:
Assumption 4.3.1 T'; € R"*" has no eigenvalues with negative real parts for all i € Np.

Assumption 4.3.2 For all i € N,,, there exist X; and U; that satisfy the following linear matrix equations

(i.e., regulator equations)

XI; = AX;+BU,, (4.20)

0 = CX,—F,. 4.21)

The next lemma immediately follows from Theorem 1.7 and Lemma 1.4 in [25].

Lemma 4.3.1 Under Assumption 4.2.1, let the feedback gain Ki; be such that A+ BK,; is Hurwitz for all
i€ M. Let Assumptions 4.3.1 and 4.3.2 hold. If the feedforward gain K>; = U; — K;X; for all i € Np, then

62

www.manaraa.com



the following linear matrix equations

XTI; = (A+BKy)Xi+BK, (4.22)

0 = CX,—F (4.23)

have a unique solution X; for all i € Np.

For any agent i € N\, we consider a generic dynamical system given by

&) = (A+BKi)G(t) + BKuSi(1) + 6i(t), &(0)=Co, >0, (4.24)

Bit) = C:&i(t) — wi(t), (4.25)

where (1) € R” is the state and ¢;(r) € R" is the piecewise continuous input. In Section 4.4, this generic
dynamical system is utilized together with the next lemma. If ¢;(¢) = 0,Vr > 0, then Lemma 4.3.2 is a

special case of Lemma 1.4 in [25], where its proof is given in Appendix C.

Lemma 4.3.2 Consider the hypotheses of Lemma 4.3.1 and the system in (4.24) and (4.25). Iflim;_,o ¢; (1) =

0, then lim;_,c. 3,-(t) =0 for all 5;‘0 € R" and §;y € RM.

4.4 Main Results

This section proposes approaches to design the distributed controllers introduced in Section 4.3 for

the problems stated in Definitions 4.3.1 and 4.3.2.

4.4.1 Solutions to the Problem in Definition 4.3.1

First, define the error between the state of each agent and the state of its corresponding reference

model as

fi(t) é)C,'(l‘) —xr,-(t). (426)
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4.4.1.1 Synthesis of First Distributed Controllers

Inserting (4.15) into (4.1) and using (4.13) together with (4.26), the error dynamics of each agent

can be written as

Xi(1) = (A= 1;BK)X +k3< Y ai (%(0) —%i(1) (1) Xri(f))+Hi9i(l)5i(l)>7

]GN,\/\/
%(0) =%, t>0. (4.27)

To exploit the first controllers given by (4.13) and (4.15), the following assumption is required.
Assumption 4.4.1 For all i € N, N;\ N, is nonempty.

Remark 4.4.1 Let dy; £y JENAN, i be the another in-degree for each agent in N,. Thus, Assumption 4.4.1
is equivalent to dy; € R for all i € N,,. Here, we note that this assumption is not necessary to solve the
problem stated in Definition 4.3.1; specifically, it is not required in the second controllers.

We now state one of the main results of this paper whose overall conclusion is that the distributed

controllers in (4.13) and (4.15) with an appropriate design approach solve the problem in Definition 4.3.1.

Theorem 4.4.1 Consider the hypotheses of Theorem 4.2.1 and the controllers in (4.13) and (4.15). If [; >
0.5 for all i € Ny, then the property i) of Definition 4.3.1 holds. If, in addition, kidy; > 0.5 for all i € N,
then the property ii) of Definition 4.3.1 holds. Furthermore, let Assumptions 4.3.1 and 4.3.2 hold and
H = klflU,- +dpiKX; for all i € Ny,. Then the property iii) of Definition 4.3.1 holds.

Proof. Let x;9 € R¥" be given. By Theorem 4.2.1, lim_,e. (xy(r) —x; (1)) = 0 for all i € N. Let
xo € RV and § € R" be given. First, fix i € Np/. Then the error dynamics in (4.27) reduces to the form

given by
)éi(l) = (A —lll‘BK))Zi(l‘), fl(O) :551'07 t> 0. (4.28)

Since /;; > 0.5 for all i € N}y, A —1};BK is Hurwitz for all i € N}y by Lemma 4.2.2. Hence, lim;_., X;(1) =0.

T

Since limy_se (x:i(f) — x7(£)) = 0 and limy_e %i(7) = 0, limeo (x;(t) — x7(¢)) = 0, which gives the first

conclusion of the theorem.
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Second, let i € N,. Define p;(t) £ Yjen N, @ii%)(t) and p;(t) = Y jen N, i (x:j(t) = x¢i(2)). Using

the definition of dy;, (4.27) can now be written as
)é,'(l‘) = (A*k,'dp,'BK)fi(l‘) + k;B (K(p,(l‘) +[J,‘(l‘))+Hi9,'(l‘)5i(t)> , )Z,(O) =X, t=>0. 4.29)

Since k;dy; > 0.5 for all i € N, A — kidp,; BK is Hurwitz for all i € N, by Lemma 4.2.2. Note that the solution
of the linear time-invariant system in (4.14) is continuous on [0,0); that is, x;() is continuous on [0, ) for
all i € . Thus, u;(¢) is a continuous function of 7. Similarly, &;(r) is a continuous function of 7. By the first
part of the proof, p;(¢) is a continuous function of ¢ and lim,_,. p;(¢) = 0. Moreover, lim;_,. 1;(¢) = 0 since
all the reference models are synchronized. For the second conclusion of the theorem, let lim,_,.. 6;(¢) = 0.
By Lemma 4.2.4, lim, .. H;6;(¢)5;(t) = 0. Clearly, k;B (K(p;(t) + wi(t)) +Hl-91-(t)6,-(t)> is a convergent
piecewise continuous function of # to 0. By Lemma 4.2.5, lim, ,..%;(t) = 0. Hence, the property ii) of
Definition 4.3.1 follows from the same argument in the first part of the proof. For the third conclusion
of the theorem, let lim/ .. 6;(t) = 1. Put &(r) £ C:%:(t) — wi(r). Observe that y;(t) — (y; () + wi(r)) =
&(1) 4+ Ci(x:i(t) — x(1)). Now, it suffices to show that lim,_,«. &(¢) = 0. Let K1; £ —k;dp;K and Ky; = k;H;.

Then, (4.29) can be rewritten as

fi(t) = (A+BK1[)X[(Z)+BK2[55(I)+ k;B (K(p,(l)'i‘,ul(l‘)) —H; (1 —9,'(1‘)) 5,(1‘)) s

%(0) =%, 1>0. (4.30)

By Lemma 4.2.4, lim_,. H; (1 — 6;(t)) §;(t) = 0. Clearly, k;B <K(p,~(t) + wi(t)) — H;(1— Qi(t))ﬁi(t)) is a
convergent piecewise continuous function of # to 0. Using the given definition of H;, it can be seen that

Ky = U; — K;X;. All the conditions of Lemma 4.3.2 therefore hold. Hence, lim,_,« &;(¢) = 0, as desired. H

Remark 4.4.2 We have not incorporated Assumption 4.4.1 into the preceding theorem explicitly. However,
Assumption 4.4.1 is necessary for the following condition given in Theorem 4.4.1: kidp; > 0.5 for all i € N,

If each nonzero a;j and k; is 1, then Assumption 4.4.1 is also sufficient.
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4.4.1.2 Synthesis of Second Distributed Controllers

Inserting (4.16) into (4.1) and using (4.13) together with (4.26), the error dynamics of each agent

can be written as

)?,‘(l‘) = (A—lz,‘BK)fi(l)+kiBHi9i(l)5i(I), 55,(0) = X0, t>0. (4.31)

The distributed controllers in (4.13) and (4.16) with the following design approach address the problem in

Definition 4.3.1. The proof of Theorem 4.4.2 is similar to Theorem 4.4.1; hence, we omit it.

Theorem 4.4.2 Consider the hypotheses of Theorem 4.2.1 and the controllers in (4.13) and (4.16). If l,; >
0.5 for all i € N, then the properties i) and ii) of Definition 4.3.1 hold. Furthermore, let Assumptions 4.3.1
and 4.3.2 hold and H; = ki_1 (Ui + hiKX;) for all i € Ny,. Then the property iii) of Definition 4.3.1 holds.

Remark 4.4.3 In contrast to the first controllers, the feedforward gain H; of the agents in N, for the second

controllers is independent of the graph topology (i.e., d,).

Remark 4.4.4 Let the first and second controllers have the same feedback gain K. Then, for the agents in
Np/, the error dynamics due to the first and second controllers can be made identical by choosing l|; = b;
for all i € Njy. Therefore, the responses of the agents in Ny with the first controllers are identical to the
responses with the second controllers under the same initial conditions (see the examples in Section 4.5).
Moreover, let the first and second controllers use the same solutions of the regulator equations. Under
Assumption 4.4.1, for the agents in Ny, both the system matrices of the error dynamics and the feedforward
gains H; due to the first and second controllers can now be made identical by taking k; = l;/dy, for all
i € Np. With the above choices, for the agents in N, the term k;BK(p;(t) + W;(t)), which converges to
0, in (4.29) is the only term that can yield different performances for the first and second controllers.
However, under the same initial conditions, the responses of the agents in N, with the first controllers
will become indistinguishable from the responses with the second controllers after the decay of this term

(see the examples in Section 4.5).
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4.4.2 Solutions to the Problem in Definition 4.3.2

Since the stability analyses are similar to the ones in Section 4.4.1, we omit the details and proofs.
Following the steps in Section 4.4.1.1, one readily sees that (4.17) and (4.18) yield (4.27). Likewise, (4.17)

and (4.19) yield (4.31). Not surprisingly, we have the solutions given in Propositions 4.4.1 and 4.4.2.

Proposition 4.4.1 Consider the hypotheses of Theorem 4.2.2 and the controllers in (4.17) and (4.18). If
Li > 0.5 for all i € Ny, then the property i) of Definition 4.3.2 holds. If, in addition, kidy; > 0.5 for all

i € N,, then the property ii) of Definition 4.3.2 holds. Furthermore, let Assumptions 4.3.1 and 4.3.2 hold
and H; £ ki_1 Ui+ dpiKX; for all i € N,. Then the property iii) of Definition 4.3.2 holds.

Proposition 4.4.2 Consider the hypotheses of Theorem 4.2.2 and the controllers in (4.17) and (4.19). If
l; > 0.5 for all i € N, then the properties i) and ii) of Definition 4.3.2 hold. Furthermore, let Assumptions

4.3.1 and 4.3.2 hold and H; = k; ' (U; + ;K X;) for all i € Ny,. Then the property iii) of Definition 4.3.2 holds.

4.5 Numerical Examples

In this section, we present numerical examples about the theoretical results provided in Section 4.4.
The communication graphs G and G described in Figure 4.1 are used for these examples. It is also assumed
that p = 3, that is; NV, = {1,2, 3}. With this setup, Assumptions 4.2.2, 4.2.3, and 4.4.1 are clearly satisfied.
In the simulations, we take a;; = 1 whenever a;; € R-o. We apply the same rule to the parameters k;, [y;, b,

and s;.

Figure 4.1: The directed communication graph G, which does not include the leader node vy, and the
augmented directed communication graph G, which includes the leader node and the edges denoted by
dashed arrows.
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4.5.1 First Example

To illustrate the results in Section 4.4.1, we consider nine agents that have fourth-order dynamics,

where x;(t) = [x;1(¢),xi2(t),x:3(¢), xi4(¢)]T, with the following system and input matrices

-1 1 0 1 0 1
0 0 1 0 2 1
A= ,B= ; (4.32)
0.000625 —0.0625 0.01 O 01
1 —0.5 0 -1 1 0
and output matrices for the agents in N/,
1 00O 01 00
Ci= ,i=1,2, CG3= ) (4.33)
0 010 0010

over the graph G in Figure 4.1. Moreover, the agent-specific dynamical systems of the agents in N, are

determined by
000
1 00
Ii={0 0 1|, F= ,i=1,2, (4.34)
010
000
—1.5 0.5 —1.5 1

225 125 025 225
= . B=Cs. (4.35)
1.125 —0.625 0.625 —0.375

0.125 -0.625 —-1.375 -0.375

With the given matrices, Assumptions 4.2.1 and 4.3.1 hold. Assumption 4.3.2 also holds by Theorem 1.9 in
[25] since Assumption 1.4 in [25] is satisfied for each agent in /\/p.

We take Q = I and R = I, in (4.2). Then, the feedback gain K, given in Lemma 4.2.1, is computed
through the unique positive definite solution to (4.2) (e.g., see MATLAB function Igr). The coupling gain
c is also set to 1. Hence, the conditions of Theorem 1 are satisfied. Note that the regulator equations in
(4.20) and (4.21) can be transformed into systems of linear equations (see the proof of Theorem 1.9 in [25]).

For the agents in N, the resulting systems of linear equations have unique solutions since each matrix of
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coefficients for these systems is nonsingular. With these solutions, the feedforward gains H; of the agents in
./\/'p for the first and second distributed controllers, given in Theorems 4.4.1 and 4.4.2, are computed. Thus,
our numerical setup satisfies every condition in Theorems 4.4.1 and 4.4.2.

The initial conditions of the agents and their corresponding reference models are given by x;0 =
[£(=1)1,0,£(=1)",0]T and xyo = 514 for all i € A" Moreover, the initial conditions of (4.9) are given by
810 = [2,0,0.02]T, & = [—2,0,—0.02]T, and &30 = 3 14.

Finally, let 0,(r) = 6,(r) = 1 if r € [10,50) sec, 6;(¢) = 6,(r) = O otherwise. Let 03(¢) =1 if
t € [30,70) sec, B5(¢) = 0 otherwise. These inform the first three agents that the first and second ones have
local objectives only from 10 to 50 sec, and the third one has local objective only from 30 to 70 sec. Now,
the responses of all agents with the first and second distributed controllers are illustrated in Figures 4.2 and
4.3. As expected by Theorems 4.4.1 and 4.4.2, every agent in Ny obeys the global objective x}(¢) of the
multiagent system and every agent in N, performs its own local objective @;(¢) around y;(r) if it is assigned

and obeys the global objective otherwise.

8
6
S 4
= 2
ofl.
-2
\ \ \ \ \ \ *
5 N, ’ _—1T (t)
2 7 z 7= = () + )
.Hg- o ™\ 4 N AN NN A e yg(t) + wz(t)
2 2 . =-==y5(t) + ws(t)
N — ()
-4 \ \ \ \ \ \ \ (1)
0 10 20 30 40 50 60 70 8 73 (t) 100
—z(t) =
—a5(t) y
— ) 4
— 337(,5) v
......‘.' —_— g (t) leae
— (1) |
0 10 20 30 40 50 60 70 80 90 100
6 _
34 .
8 5 B
0 N
! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

t (sec)

Figure 4.2: Responses of all agents with the first distributed controllers.
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Figure 4.3: Responses of all agents with the second distributed controllers.

4.5.2 Second Example

90

Now, our aim is to illustrate the results in Section 4.4.2. For brevity, we only give the changes with

respect to the previous subsection. First, replace (4.32) by

0O 1 0 O 00
-1 0 0 O 10
A= , B= ,
0 0 0 1 00
0O 0 -1 0 0 1
and (4.33) by
1 000
C = ,i=1,2,3.
0010

(4.36)

(4.37)
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Consider the augmented graph G in Figure 4.1. Instead of (4.34) and (4.35), we have I'; = 0, I, = A,
h=FK=5L,F,=C,and

I3 = 02 . (4.38)

-2 0

Then, we take Q = diag(10,1,10,1) and R = I, in (4.2) and the coupling gain ¢ = 2. By following the
procedure in Section 4.5.1, the feedback gain K and the feedforward gains H; are obtained. Moreover,
all initial conditions are selected as follows: x;0 = [ﬁ(—l)i,O,O,O]T and x.j0 = xjo for all i € N ry =
[0,—2,1,0]T, 810 = [3,2]T, & = [0,2,—1,0]T, and 80 = [0,0.5]T. Let 6;(¢) = 6,(¢) = 1 if ¢ € [15,45)
sec, 01 (1) = 6,(t) = 0 otherwise. Let 65(r) = 1 if 7 € [30,45) sec, 65(r) = 0 otherwise.

Each agent in this example may be regarded as an undamped vehicle. In particular, the first and
third state variables of the agents correspond to the positions in the x and y directions, respectively, while the
second and fourth ones correspond to the velocities in the x and y directions, respectively. Because of the
output matrices in (4.37), local objectives of the agents in N, are related to their positions. In Figures 4.4
and 4.5, the position trajectory of each agent is presented with the first and second distributed controllers,
where y; = Cix; with C; = C, for all i € J\/p/ and y* = Cr. Also, “0” denotes the position of each agent at
t =0,1=15,1 =30, and r = 45 sec in the subplots. It is observed that every agent in V;y synchronizes to
the leader in (4.5) whose position trajectory is an ellipse. On the other hand, the agents 1, 2, and 3 track
another ellipse, go to the origin, and track another geometric trajectory, respectively, when they are assigned

the local tasks and synchronize to the leader otherwise.

4.6 Conclusion

The current literature of distributed control provides useful methods to achieve a wide range of
global objectives for multiagent systems. In this paper, we have considered networks of agents with not
only global but also local objectives. For linear time-invariant multiagent systems over fixed directed
communication graph topologies, we defined agent-specific dynamics to assign local tasks to a subset of
agents around the global objective of the multiagent system, constructed reference models for all agents
by means of two existing synchronization results, and introduced two classes of distributed controllers.

We then system-theoretically stated the considered control problems and solved them by both employing
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Figure 4.4: Position trajectories of all agents with the first distributed controllers.

the converging-input converging-state property for a class of linear systems and applying the feedforward
design methodology from the linear output regulation theory. In short, the second controllers are superior in
terms of restriction and dependence on communication graphs (see Remarks 4.4.1 and 4.4.3) and transient
performance (see Remark 4.4.4), whereas the first controllers may incur less measurement cost than the
second controllers (see Remark 4.3.1).

Although leaderless synchronization and synchronization to a leader are considered in this paper as
global objectives, we expect that our framework can be useful for other global objectives such as containment
and formation once reference models for agents are constructed through some results addressing these global
objectives. Furthermore, it can be desirable in practical applications that some agents perform different local
objectives. Our results can also be extended to this case by introducing various agent-specific dynamical

systems for each of these agents and utilizing the state of one of the introduced systems together with its
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Figure 4.5: Position trajectories of all agents with the second distributed controllers.

corresponding feedforward gain in distributed controllers depending on the current local objective for each
of them. Other research directions include, but are not limited to, the accomplishment of agents’ local
objectives in finite time and the investigation of another problem led by local objectives that are determined

directly (i.e., they are not relative to the global one).
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Chapter 5: Concluding Remarks

This work has investigated three aspects of distributed control problems arising from networks of
heterogeneous agents or the heterogeneous nature of multiagent systems. In this chapter, we summarize our

results and provide a few directions for future research inspired by them.

5.1 Conclusions

We studied the cooperative output regulation problem of heterogeneous linear time-invariant multi-
agent systems over fixed directed communication graph topologies in Chapter 2. For three internal model-
based distributed control laws, namely dynamic state feedback, dynamic output feedback with local mea-
surement, and dynamic output feedback, the solvability of the problem was investigated in two steps. First,
the overall closed-loop stability (i.e., global property), which requires both the dynamics of every agent and
the communication graph, was assumed and it was proved, under mild assumptions, that the problem is
solved. Second, an agent-wise local sufficient condition, which paves the way for independent controller
design for each agent, was provided to ensure the global property under standard assumptions. We also
reported and addressed a considerable number of gaps in the existing related literature.

In Chapter 3, the definition of the linear cooperative output regulation problem was updated to allow
not only the primary synchronization role but also a secondary synchronization role for a distributed dynamic
state feedback control law that does not rely on the exchange of its state variables. Similar to Chapter 2,
the solvability of the updated problem was investigated by employing the internal model approach and a
small-gain theorem. It should be emphasized that the proposed distributed control laws in Chapters 2 and 3
solves the linear robust cooperative output regulation problem as well.

In this dissertation, we also focused on distributed control problems of linear time-invariant mul-
tiagent systems with both global and local objectives. Specifically, we defined agent-specific dynamics to
assign local tasks to a subset of agents around the global objective of the multiagent system, constructed

reference models for all agents by means of two existing synchronization results, and introduced two classes
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of distributed controllers. We then system-theoretically stated the considered control problems and solved
them by making use of the converging-input converging-state property for a class of linear systems and the

feedforward approach of the linear output regulation theory.

5.2 Recommendations for Future Research

The communication graph was assumed to be fixed throughout this work. However, in practice,
it can be switching due to unreliable communication links. Thus, extensions of our results, particularly
cooperative output regulation results, to switching topologies would be a major development.

The agent-wise local sufficient conditions in Chapters 2 and 3 are the salient outcomes of this work.
For all their importance, the agent-wise local sufficient condition in Chapter 3 can be more conservative than
the corresponding one in Chapter 2 because of the following reasons: First, unlike .4, the spectral radius of
Q may not be less than 1. Second, instead of one £, gain, two £, gains for each agent need to be minimized
in Chapter 3. Therefore, further research on relaxation of the agent-wise local sufficient condition for the
linear cooperative output regulation problem in Chapter 3 is recommended. In addition, future research
can extend the results of Chapter 3 to multiple secondary synchronization roles. As in Chapter 2, dynamic
output feedback control laws can also be considered for the problem in Chapter 3.

According to the problem definitions in Chapter 4, agents are expected to achieve their local objec-
tives asymptotically. However, the accomplishment of agents’ local objectives in finite time or prescribed

time would be desired for time critical applications.
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Appendix A: Solvability of (2.26) and (2.27)

Section III in [1] also studies the solvability of the matrix equations in (2.26) and (2.27), which
correspond to the matrix equations given by (6) in [1], with an alternative approach. Specifically, the last
paragraph of Section III in [1] lists three sufficient conditions based on Remark 3.8 of [70] to guarantee
that these matrix equations have a unique solution. However, it cannot be guaranteed as it is claimed in [1].
This section aims to present the gaps between the conditions and the existence of a unique solution to the
matrix equations, propose appropriate modifications that fill these gaps, and explain the motivation behind
our approach. For this purpose, we first focus on Definition 3.7 and Remark 3.8 in [70] to fix a problem
in [70]. Then, we revisit the conditions listed in [1] to point out the missing one. Finally, a motivational
example is provided and the difference between the approach in [1] and the one in this paper is highlighted.

In this paragraph, the notation and the terminology in [70] are adopted and readers are referred
to (3.5), (3.6), (3.8), Definition 3.7, and Remark 3.8 in [70]. The problem in [70] is that the conditions
of Remark 3.8 do not ensure the stabilizability of the pair given by (3.8). Moreover, this problem is
directly transferred to [1]. To illustrate this point, we consider the following system, input, output, and

direct feedthrough matrices of the plant; and system matrix of the exosystem

It can be easily checked that the plant and the exosystem above satisfy the first and the second conditions of
Remark 3.8. Note that m(s) = s is the minimal polynomial of A;. Then, choose the pair (f;,0;) in (3.6) as

follows
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It is obvious that the pair (f31, 07) is controllable and the minimal polynomial of A; divides the characteristic
polynomial of B;. Thus, the pair (G, G,) £ (B1,01) incorporates a 1-copy internal model of A; according
to Definition 3.7. Let us now investigate the stabilizability of the pair in (3.8). This pair is not controllable
by the controllability matrix test (e.g., see Theorem 12.1 in [59]) and the eigenvalues of the first matrix of
this pair are —1, 0, 1, and 2. The eigenvector test for stabilizability (e.g., see Theorem 14.1 in [59]) reveals
that unstable eigenvalue 1 is the uncontrollable mode; that is, the pair in (3.8) is not stabilizable. Hence,
there do not exist K; and K5 such that A, defined in (3.5) is Hurwitz. This counterexample to Remark 3.8
is obtained due to the fact that the constructed G violates Property 1.5 in [25]. In fact, J. Huang (personal
communication, June 9, 2018) recognizes the problem in Remark 3.8; hence, he adds Property 1.5 as a
condition to Lemma 1.2623 of [25].

In this paper, Definition 2.2.1 modifies the second property of Definition 1.22 given after (1.58) in
[25]. This modification guarantees that Property 1.5 in [25] automatically holds if Assumption 2.3.5 holds.
Based on the foregoing discussions, it is clear that Remark 2.4.4 is true.

The following two paragraphs adopt the notation and the terminology from [1]. Readers are
referred to (5), (6), (7), (8), (10), Definition 2, Lemma 2, Section II.B, and Section IIl in [1]. It is shown
in Section III that if the matrix equations in (8) have solutions Xj; and Xp; for i = 1,...,N, then the ones
in (7) have solutions X; = diag(Xjy,...,Xiy) and X, = diag(Xyy,...,Xoy); that is, the matrix equations in
(6) have a solution X = [X[ XJ|T. Furthermore, it is claimed that if the three conditions®* listed in the
last paragraph of Section III hold, then the matrix equations in (8) have unique solutions Xj; and X»; for
i=1,...,N. However, these conditions do not guarantee the unique solutions. For, consider A} =0, B; =1,
Ci=1,D,=0,S=0,R=1,P =1, F, =0, and G| = 1. It can be easily checked that the listed conditions
are satisfied and Property 1.5 in [25] is not violated. Choose K| = 0 and H; = 0. From the first matrix
equation in (8), we get 1 = 0, which is a contradiction. We now point out the problem in the claim. First,
observe that the matrix equations in (8) can be equivalently written as the matrix equations given by (1.70)
and (1.71) in [25]. Then, by Lemma 1.27 in [25], one can note that the following condition is missed in the
claim: A; given after (10) is Hurwitz® fori=1,...,N. It can be shown that this condition, together with the

assumption on S, ensures that zero matrices are the unique solutions to the off-block-diagonal matrix

23We also note that the proof of Lemma 1.26 in [25] is still valid even if Assumption 1.1 in [25] is removed from the
hypotheses of Lemma 1.26.

241n Section ILB, S is assumed to have no strictly stable modes.

25 After the suggested modification above, K; and H; can always be chosen such that A; is Hurwitz under the listed conditions.
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equations in (7) by adding G, ((CC +D.K.)X; +D:H:X> — RC) to the left side of the second equation in (7)

that gives an equivalent form of (7) and applying the first part of Proposition A.2 in [25]. In conclusion,

if the assumption on S holds, the third condition in the list holds for i = 1,...,N, and A; is Hurwitz for

i=1,...,N, then the matrix equations in (6) have a unigue solution X.

According to Lemma 2, the problem in Definition 2 is solved if the assumption on S holds, A;

given after (5) is Hurwitz, and the matrix equations in (6) have a unique solution X. Although the approach

utilized during the derivation of the listed conditions does not take into account the assumption on A;, one

may wonder the answer of the following question: Let the listed conditions hold and A; be Hurwitz. Then,

can we conclude that A; is Hurwitz for i =1,...,N? The answer is no. That is, the missing condition cannot

be satisfied by assuming that the listed conditions hold and A; is Hurwitz. To clarify this point, consider the

system parameters of the agents, the system matrix of the exosystem, and the adjacency matrix of G*

Ay

Ay

A3

-1 1 1 0.5
731: 7C1—|:1 —0.5:|7D1_07
1 0 0 0.25
010 0
0 0 1 7B2: 0 7C2_|:1 0 0:|7D2_07

00 0 1
1,B3=-1,C3=1,D3=0,5=0,

1 0 0 O
05 0 0 05

0 05 0 05

0 05 05 O

Choose (F;,G;) = (0,1), i = 1,2,3. It can be easily checked that the listed conditions are satisfied and

Property 1.5 in [25] is not violated. One can also obtain W, which is required to construct A;, from Q™.

Then, choose the remaining parameters of the controllers as follows

K

K>

2.6752 9.6624 —6.4
y 111 = )

—10.6752 —24.6624 6.4

— (10456 57.936 14.828|, H, =—80, K3 =0.8, H3=1.

With this setup, it can be verified that Aj is not Hurwitz even though A; is Hurwitz.
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Based on the previous example, the following question arises: Is the missing condition in [1]
necessary to ensure that the matrix equations given by (6) in [1] have a unique solution? In fact, this
question is the motivation behind the key lemma (i.e., Lemma 2.4.3) of this paper and the answer is no.
In contrast to Section III in [1], the approach in Lemma 2.4.3 does not decompose matrix equations,
which consist of the overall dynamics of the multiagent system, into matrix equations, which deal with
the dynamics of each agent separately; hence, the missing condition in [1] is not required in Lemma 2.4.3.
Furthermore, not only dynamic state feedback but also dynamic output feedback with local measurement
and dynamic output feedback effectively utilize Lemma 2.4.3 to solve the stated problem in Definition 2.3.1
(see Theorems 2.4.1, 2.4.3, and 2.4.4).

Since the proof of Theorem 1 and the statement of Theorem 4 in [39] use the approach in Section

III of [1], we believe that the discussion in this section will also be helpful for the readers of the results in

[39].
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Appendix B: On Theorem 2 in [1]

In this section, the notation and the terminology in [1] are adopted and readers are referred to (5),
(10), (15), and Theorem 2 in [1]. Now, consider the system parameters of the agent, the system matrix of

the exosystem, and the adjacency matrix of G* given by

1 0 O
1 00 .
A = 0 1 0|,Bi=5hk,C= ,D1=0,8=0, 0" =
010 10
00 -1
Choose (F1,G1) = (0,1,) and
-2 0 0 -1 0
Ky = 10 =2 0,Hi=|0 -1
0 0 2 0 0

Note that W = 1 from Q*; hence, A; given after (5) is nothing but Al given after (10). With this setup, one
can verify that 7j (s) given before Theorem 2 is stable and the condition in (15) is automatically satisfied, but
Ay is not Hurwitz. This counterexample is obtained because the realization of 77 (s) is neither stabilizable
nor detectable. In fact, a loss of one of them is enough to find a counterexample.

The above setup also applies to Theorem 5 in [39] since it relies on Theorem 2 and its conditions
are satisfied. It should be noted that although Assumptions 1-4 in [39] and Property 1.5 in [25] are not listed

in the hypotheses of Theorem 5 in [39], this counterexample does not violate them.
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Appendix C: Proofs of Lemmas 4.2.3-4.2.5 and 4.3.2

Proof of Lemma 4.2.3. Since lim,_,.. f(t) = h € R", there exists a T € R~ such that || f(¢) — k|2 <
1,Vt > T. Hence, the triangle inequality ||f(z)||2 < ||f(z) — k|2 + ||2||2 yields || f(¢)]|2 < ||h]]2+ 1,V > T,
so f is bounded in (7', o0). Since [0, 7] is compact and f is piecewise continuous on [0,T], f is bounded on
[0,T] by Proposition 2.18 in [66]. Thus, the result follows. [ |

Proof of Lemma 4.2.4. Since lim,_,.. g(¢) = 0 and the range of g is a subset of {O, 1}, there exists
aT € Ry such that g(r) = 0,Vr > T. This implies that (gf)(t) = 0,Vr > T and completes the proof of the
lemma. |

Proof of Lemma 4.2.5. Since the system in (4.7) is linear time-invariant and A, is Hurwitz, (4.7) is
input-to-state stable (e.g., see the fourth part of Exercise 7.3.11 in [71], Chapter 4.9 in [55], and Chapter 4.5
in [66]). Since (4.7) is input-to-state stable and 7(¢) is piecewise continuous, lim,_,. 1 (¢) = 0 implies that
lim, . £ (1) = O for all § € R” (e.g., see the second part of Exercise 7.3.11 in [71], Exercise 4.58 in [55],
and the proof26 given after Definition 4.6 in [66]). [ |

Proof of Lemma 4.3.2. Under the hypotheses of Lemma 4.3.1, (4.22) and (4.23) have a unique
solution X;. Let 5;‘0 € R" and &) € R" be given. Define éi(t) = i:’[(t) — X;8(t). Then, using (4.9), (4.10) and
(4.22)-(4.25), we have

Gi(t)=(A+BK)Gi(t) + ¢i(r), &i(0) =G, >0, (A.1)

Bi(t) =CiGi(¢). (A.2)

Since A + BK); is Hurwitz and ¢;(¢) is a convergent piecewise continuous function of 7 to 0, lim; .. §;(r) =0

by Lemma 4.2.5. It now follows from (A.2) that lim,_,c Bi(t) =0. [ |

26Although it is assumed in [66] that 17 (¢) is continuous, bounded, and lim;_,.. 1} () = 0, the proof in [66] is still valid when
7 (¢) is piecewise continuous and lim;_,., 17 () = 0 since the boundedness of 17 (¢) immediately follows from Lemma 4.2.3.
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Appendix D: Errata

i) Page 10, Line 18: Change “root node” to ‘“node”.
ii) Page 11, Line 6: Due to the given condition b) of Definition 2.2.1, s; = 51 for [ =2,..., p.

iii) Page 20, Remark 2.4.3 : For clarity, “lim; . Ag®(t) — @ (t) = Aplim, .. ®(1) — 4" @y +
lim; ;e Age™ @y — () = 0” should read “limy_,..(Ao@(t) — @ (1)) = Ao (lim;e (@ (1) — e @) +
lim, o (Ao @y — @ (1)) = 0.

iv) Page 34, Section 3.1.1: See Section 1.2 for better related literature.
v) Page 37, Line 10: Change “root node” to “node”.
vi) Page 37, Last Line: Due to the given condition i) of Definition 3.2.1, iy = hy for [ =2,...,p.

vii) Page 40, Line 6: Change “Generalizing the definition of the linear cooperative output regulation

problem in [34], the problem ...” to “The problem ...”.

88

www.manharaa.com




Appendix E: Copyright Permissions

The permission below is for the use of material in Chapter 2.

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

& cine  RightsLink’ A = A

-
@ Center Home Help Email Support Selahattin Burak Sarsilmaz v

A distributed control approach for heterogeneous linear
multiagent systems

Author: Selahattin Burak Sarsilmaz, , Tansel Yucelen

@ Taylor &Francis  pyplication: international journal of Control
Taylor & Francis Group

Publisher: Taylor & Francis
Date: Aug 20, 2019

Rights managed by Taylor & Francis

Thesis/Dissertation Reuse Request

Taylor & Francis is pleased to offer reuses of its content for a thesis or dissertation free of charge contingent on
resubmission of permission request if work is published.

BACK CLOSE

© 2020 Copyright - All Rights Reserved | ~ Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

89

www.manharaa.com




The permission below is for the use of material in Chapter 3.

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet#formTop

_ /L Copyright . . ® A ) N a
wa 8Learance nghtSLlnk

nter Home Help Email Support Selahattin Burak Sarsilmaz v

Distributed Control of Multiagent Systems with Heterogeneity in

Synchronization Roles
<¥IEEE

R " Conference Proceedings: 2019 American Control Conference (ACC)
permission Author: Selahattin Burak Sarsilmaz

content from  Publisher: IEEE

publication Date:July 2019

Copyright © 2019, IEEE

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license, however, you may
print out this statement to be used as a permission grant:

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of an IEEE
copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers) users must
give full credit to the original source (author, paper, publication) followed by the IEEE copyright line © 2011 IEEE.
2) In the case of illustrations or tabular material, we require that the copyright line © [Year of original publication]
IEEE appear prominently with each reprinted figure and/or table.

3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also obtain the
senior author's approval.

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis:

1) The following IEEE copyright/ credit notice should be placed prominently in the references: © [year of original
publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE publication title, and month/year
of publication]

2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a prominent place
on the website: In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of [university/educational entity's name goes here]'s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

BACK CLOSE WINDOW

© 2020 Copyright - All Rights Reserved |  Copyright Clearance Center, Inc. | Privacy statement | Terms and Conditions
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

lofl 5/25/2020, 2:47 PM

90

www.manharaa.com




	Distributed Control of Multiagent Systems under Heterogeneity
	Scholar Commons Citation

	tmp.1597125243.pdf.3HHsq

